Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Scalable object detection by filter compression with regularized sparse coding
 
  • Details

Scalable object detection by filter compression with regularized sparse coding

Journal
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Journal Volume
07-12-June-2015
Pages
3900-3907
ISBN
9781467369640
Date Issued
2015
Author(s)
Chao T.-H.
Lin Y.-L.
Kuo Y.-H.
WINSTON HSU  
DOI
10.1109/CVPR.2015.7299015
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413008
Abstract
For practical applications, an object detection system requires huge number of classes to meet real world needs. Many successful object detection systems use part-based model which trains several filters (classifiers) for each class to perform multiclass object detection. However, these methods have linear computational complexity in regard to the number of classes and may lead to huge computing time. To solve the problem, some works learn a codebook for the filters and conduct operations only on the codebook to make computational complexity sublinear in regard to the number of classes. But the past studies missed to consider filter characteristics, e.g., filters are weights trained by Support Vector Machine, and rather they applied method such as sparse coding for visual signals' optimization. This misuse results in huge accuracy loss when a large speedup is required. To remedy this shortcoming, we have developed a new method called Regularized Sparse Coding which is designed to reconstruct filter functionality. That is, it reconstructs the ability of filter to produce accurate score for classification. Our method can reconstruct filters by minimizing score map error, while sparse coding reconstructs filters by minimizing appearance error. This different optimization strategy makes our method be able to have small accuracy loss when a large speedup is achieved. On the ILSVRC 2013 dataset, which has 200 classes, this work represents a 16 times speedup using only 1.25% memory on single CPU with 0.04 mAP drop when compared with the original Deformable Part Model. Moreover, parallel computing on GPUs is also applicable for our work to achieve more speedup. ? 2015 IEEE.
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science