Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Visual cue cluster construction via information bottleneck principle and kernel density estimation
 
  • Details

Visual cue cluster construction via information bottleneck principle and kernel density estimation

Journal
Lecture Notes in Computer Science
Journal Volume
3568
Pages
82
Date Issued
2005-10-17
Author(s)
HSU WINSTON  
Chang, Shih Fu
DOI
https://api.elsevier.com/content/abstract/scopus_id/26444462066
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413058
URL
https://api.elsevier.com/content/abstract/scopus_id/26444462066
Abstract
Recent research in video analysis has shown a promising direction, in which mid-level features (e.g., people, anchor, indoor) are abstracted from low-level features (e.g., color, texture, motion, etc.) and used for discriminative classification of semantic labels. However, in most systems, such mid-level features are selected manually. In this paper, we propose an information-theoretic framework, visual cue cluster construction (VC3), to automatically discover adequate mid-level features. The problem is posed as mutual information maximization, through which optimal cue clusters are discovered to preserve the highest information about the semantic labels. We extend the Information Bottleneck frame-work to high-dimensional continuous features and further propose a projection method to map each video into probabilistic memberships over all the cue clusters. The biggest advantage of the proposed approach is to remove the dependence on the manual process in choosing the midlevel features and the huge labor cost involved in annotating the training corpus for training the detector of each mid-level feature. The proposed VC3 framework is general and effective, leading to exciting potential in solving other problems of semantic video analysis. When tested in news video story segmentation, the proposed approach achieves promising performance gain over representations derived from conventional clustering techniques and even the mid-level features selected manually. © Springer-Verlag Berlin Heidelberg 2005.
Type
conference paper
File(s)
Loading...
Thumbnail Image
Name

hsu05visual.pdf

Size

119.72 KB

Format

Adobe PDF

Checksum

(MD5):ba94506b143ab29b36440fe0c2fe523f

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science