Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Enhanced conversion efficiency and surface hydrophobicity of nano-roughened Teflon-like film coated poly-crystalline Si solar cells
 
  • Details

Enhanced conversion efficiency and surface hydrophobicity of nano-roughened Teflon-like film coated poly-crystalline Si solar cells

Journal
Physical Chemistry Chemical Physics
Journal Volume
14
Journal Issue
11
Pages
3968-3973
Date Issued
2012
Author(s)
Lin, G.-R.
Meng, F.-S.
Pai, Y.-H.
GONG-RU LIN  
DOI
10.1039/c2cp40102a
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/500119
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863237599&doi=10.1039%2fc2cp40102a&partnerID=40&md5=c1bd657c82c36db59d42bd66020ad4d8
Abstract
Nano-roughened Teflon-like film coated poly-crystalline Si photovoltaic solar cells (PVSCs) with enhanced surface hydrophobicity and conversion efficiency (η) are characterized and compared with those coated by a Si nanorod array or a standard SiN anti-reflection layer. The Teflon-like film coated PVSC surface reveals a water contact angle increasing from 89.3°to 96.2°as its thickness enlarges from 22 to 640 nm, which is much larger than those of the standard and Si nanorod array coated PVSC surfaces (with angles of 55.6°and 32.8°, respectively). After nano-roughened Teflon-like film passivation, the PVSC shows a comparable η(10.89%) with the standard SiN coated PVSC (η = 11.39%), while the short-circuit current (I SC) is slightly reduced by 2% owing to the slightly decreased UV transmittance and unchanged diode performance. In contrast, the Si nanorod array may offer an improved surface anti-reflection with surface reflectance decreasing from 30% to 5% at a cost of optical scattering and randomized deflection, which simultaneously decrease the optical transmittance from 15% to 3% in the visible region without improving hydrophobicity and conversion efficiency. The Si nanorod array covered PVSC with numerous surface dangling bonds induced by 1 min wet-etching, which greatly reduces the open-circuit voltage (V OC) by 10-15% and I SC by 30% due to the reduced shunt resistance from 3 to 0.24 k. The nano-scale roughened Teflon-like film coated on PVSC has provided better hydrophobicity and conversion efficiency than the Si nanorod array covered PVSC, which exhibits superior water repellant performance and comparable conversion efficiency to be one alternative approach for self-cleaning PVSC applications. © 2011 The Owner Societies.
SDGs

[SDGs]SDG7

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science