Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Thermally assisted mobility of nanodroplets on surfaces with weak defects
 
  • Details

Thermally assisted mobility of nanodroplets on surfaces with weak defects

Journal
Journal of Colloid and Interface Science
Journal Volume
604
Pages
150-156
Date Issued
2021
Author(s)
Tsao Y.-H
Wang T.-Y
Tsao H.-K
Sheng Y.-J.
YU-JANE SHENG  
DOI
10.1016/j.jcis.2021.06.163
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109491979&doi=10.1016%2fj.jcis.2021.06.163&partnerID=40&md5=12d782c38c18d62174303472a9724fd4
https://scholars.lib.ntu.edu.tw/handle/123456789/598291
Abstract
Hypothesis: Thermal activation plays an essential role in contact line dynamics on nanorough surfaces. However, the relation between the aforementioned concept and the sliding motion of nanodroplets remains unclear. As a result, thermally assisted motion of nanodroplets on nanorough surfaces is investigated in this work. Experiments: Steady slide and random motion of nanodroplets on surfaces with weak defects are investigated by Many-body Dissipative Particle Dynamics. The surface roughness is characterized by the slip length acquired from the velocity profile associated with the flowing film. Findings: The slip length is found to decline with increasing the defect density. The linear relationship between the sliding velocity and driving force gives the mobility and reveals the absence of contact line pinning. On the basis of the Navier condition, a simple relation is derived and states that the mobility is proportional to the slip length and the reciprocal of the product of viscosity and contact area. Our simulation results agree excellently with the theoretical prediction. In the absence of external forces, a two-dimensional Brownian motion of nanodroplets is observed and its mean square displacement decreases with increasing the defect density. The diffusivity is proportional to the mobility, consistent with the Einstein relation. This consequence suggests that thermal fluctuations are able to overcome contact line pinning caused by weak defects. ? 2021 Elsevier Inc.
Subjects
Contact line pinning
Einstein relation
Mobility of nanodroplet
Nanorough surfaces
Slip length
Thermal fluctuations
Capillary flow
Defect density
Contact-line dynamics
Dissipative particle dynamics
Linear relationships
Mean square displacement
Sliding velocities
Thermal activation
Surface roughness
article
diffusivity
motion
prediction
simulation
viscosity
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science