Repository logo
  • English
  • 中文
Log In
  1. Home
 
  • Details

Monodisperse ordered indium-palladium nanoparticles: Synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction

Journal
Nanoscale
Journal Volume
11
Journal Issue
7
Pages
3336-3343
Date Issued
2019
Author(s)
Chen Y.-J.
Chen Y.-R.
Chiang C.-H.
Tung K.-L. 
Yeh T.-K.
Tuan H.-Y.
DOI
10.1039/c8nr07342b
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/410367
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061560594&doi=10.1039%2fc8nr07342b&partnerID=40&md5=b2e3085986b714b93c91dd57c6a5edc7
Abstract
The slow kinetics of ethanol oxidation reaction (EOR) has limited its widespread use for fuel cells. Bimetallic catalysts with optimized surface compositions can considerably govern rate-determining steps through selectivity for CH 3 COOH formation or by facilitating the adsorption of OH ads via the bifunctional effect of an alloy to increase the EOR's kinetic rates. Here, we reported monodisperse ordered In-Pd nanoparticles as new bimetallic high-performance catalysts for EOR. In-Pd nanoparticles, i.e., In 3 Pd 2 and In 3 Pd 5 were prepared using arrested precipitation in solution, and their composition, structures, phase and crystallinity were confirmed using a variety of analyses including TEM, XPS, EDS and XRD. In-Pd nanoparticles were loaded on carbon black (Vulcan XC-72) as electrocatalysts for EOR in alkaline media. In 3 Pd 2 and In 3 Pd 5 nanoparticles exhibited 5.8 times and 4.0 times higher mass activities than commercial Pd/C, which showed that the presence of indium greatly boosts electrocatalytic reactivity for EOR of Pd catalysts. This performance is the best among those of bimetallic nanoparticles reported to date. Such high performance of In-Pd nanoparticles may be attributed to the following two reasons. First, In-Pd nanoparticles exhibited excellent CO anti-poison ability, as confirmed by CO striping experiments. Second, as revealed by DFT calculations of metals with OH ads adsorption, In atoms on In 3 Pd 2 surface exhibited the lowest energy (-1.659 eV) for OH ads adsorption as compared to other common oxophilic metals including Sn, SnPt, Ag, Ge, Co, Pb, and Cu. We propose that the presence of indium sites promoted efficient free OH radical adsorption on indium sites and resulted in a faster reaction rate of acetate formation from acetaldehyde (the rate determining step for EOR on Pd sites). Finally, a single direct ethanol fuel cell (DEFC) with Pd/C anode was prepared. Compared to the results for a commercial Pd/C anode, the open circuit voltage (OCV) of In 3 Pd 2 /C improved by 0.25 V (from 0.64 to 0.89 V) and the power density improved by ?80% (from 3.7 to 6.7 mW cm -2 ), demonstrating its practical uses as Pt or Pd catalyst alternatives for DEFC. This journal is ? The Royal Society of Chemistry.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science