Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Low-Complexity On-Demand Reconstruction for Compressively Sensed Problematic Signals
 
  • Details

Low-Complexity On-Demand Reconstruction for Compressively Sensed Problematic Signals

Journal
IEEE Transactions on Signal Processing
Journal Volume
68
Pages
4094-4107
Date Issued
2020
Author(s)
AN-YEU(ANDY) WU  
DOI
10.1109/TSP.2020.3006766
DOI
ITPRE
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089303594&doi=10.1109%2fTSP.2020.3006766&partnerID=40&md5=02cb607776f5fe7f966a53f8f7e4551c
https://scholars.lib.ntu.edu.tw/handle/123456789/611217
Abstract
Compressed Sensing (CS) is a revolutionary technology for realizing low-power sensor nodes through sub-Nyquist sampling, and the CS reconstruction engines have been widely studied to fulfill the energy efficiency for real-time processing. However, in most cases, we only want to analyze the problematic signals which account for a very low percentage. Therefore, large efforts will be wasted if we recover uninterested signals. On the other hand, in order to identify the high-risk signals, additional hardware and computation overhead are required for classification other than CS reconstruction. In this paper, to achieve low-complexity on-demand CS reconstruction, we propose a two-stage classification-aided reconstruction (TS-CAR) framework. The compressed signals can be classified with a sparse coding based classifier, which provides the hardware sharing potential with reconstruction. Furthermore, to accelerate the reconstruction speed, a cross-domain sparse transform is applied from classification to reconstruction. TS-CAR is implemented in electrocardiography based atrial fibrillation (AF) detection. The average computational cost of TS-CAR is 2.25× fewer compared to traditional frameworks when AF percentage is among 10% to 50%. Finally, we implement TS-CAR in TSMC 40 nm technology. The post-layout results show that the proposed intelligent CS reconstruction engine can provide a competitive area- and energy-efficiency compared to state-of-the-art CS and machine learning engines. © 1991-2012 IEEE.
Subjects
compressed learning; Compressed sensing; hardware sharing; on-demand reconstruction; sparse transform
SDGs

[SDGs]SDG7

Other Subjects
Compressed sensing; Energy efficiency; Engines; Learning systems; Sensor nodes; Signal reconstruction; Atrial fibrillation; Compressive sensing; Computation overheads; Computational costs; Realtime processing; Reconstruction speed; Revolutionary technology; Sub-Nyquist sampling; Biomedical signal processing
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science