Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Vibration arthrometry in patients with knee joint disorders
 
  • Details

Vibration arthrometry in patients with knee joint disorders

Journal
IEEE Transactions on Biomedical Engineering
Journal Volume
47
Journal Issue
8
Pages
1131-1133
Date Issued
2000
Author(s)
Lee, J.-H.
Jiang, C.-C.
Yuan, T.-T.
JU-HONG LEE  
CHING-CHUAN JIANG
DOI
10.1109/10.855942
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-0034254782&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/290967
Abstract
Physiological patellofemoral crepitus (PPC) is the vibration signal produced by the knee joint during slow motion (less than 5°per second), which can be measured by vibration arthrometry (VAM). By using the autoregresslve (AR) model for the PPC signals of patients with knee osteoarthritis, the study analyzes the PPC signals to evaluate the condition of patellar-femoral joint cartilage. Accordingly, we can divide osteoarthritis into three types, type 1: the cartilage of patellar-femoral joint is intact, the osteoarthritis found in the femoral-tibial joint surface; type 2: degeneration occurs in the surface cartilage of both the femoral-tibial joint and the femoral trochlea, but not on the patellar surface; type 3: both patellarfemoral and femoral-tibial joints have osteoarthritis. For the analysis, the intraclass distance of AR coefficients and spectral power ratio of dominant poles are adopted. Based on the proposed method, two cases of type 1, six of type 2, and 28 of type 3 were found in 36 cases of knee osteoarthritis. This is in agreement with the operative findings. For comparison, the PPC signals of 10 subjects with normal knees (without pain or wound history) were also measured. The results of analysis of the 10 normal subjects were consistent and clearly differentiable from those of the osteoarthritis patients. Therefore, the proposed method is efficient for the analysis of the condition of patellar-femoral joint cartilage and VAM may become an alternative way of noninvasive diagnosis of knee osteoarthritis.Physiological patellofemoral crepitus (PPC) is the vibration signal produced by the knee joint during slow motion (less than 5° per second), which can be measured by vibration arthrometry (VAM). By using the autoregressive (AR) model for the PPC signals of patients with knee osteoarthritis, the study analyzes the PPC signals to evaluate the condition of patellar-femoral joint cartilage. Accordingly, we can divide osteoarthritis into three types, type 1: the cartilage of patellar-femoral joint is intact, the osteoarthritis found in the femoral-tibial joint surface; type 2: degeneration occurs in the surface cartilage of both the femoral-tibial joint and the femoral trochlea, but not on the patellar surface; type 3: both patellar-femoral and femoral-tibial joints have osteoarthritis. For the analysis, the intraclass distance of AR coefficients and spectral power ratio of dominant poles are adopted. Based on the proposed method, two cases of type 1, six of type 2, and 28 of type 3 were found in 36 cases of knee osteoarthritis. This is in agreement with the operative findings. For comparison, the PPC signals of 10 subjects with normal knees (without pain or wound history) were also measured. The results of analysis of the 10 normal subjects were consistent and clearly differentiable from those of the osteoarthritis patients. Therefore, the proposed method is efficient for the analysis of the condition of patellar-femoral joint cartilage and VAM may become an alternative way of noninvasive diagnosis of knee osteoarthritis.
Subjects
Cartilage; Knee joint; Parametric modeling; Patella; Physiological patellofemoral crepitus; Vibration arthrometry
SDGs

[SDGs]SDG3

Other Subjects
Biomechanics; Biomedical equipment; Bone; Cartilage; Musculoskeletal system; Patient monitoring; Regression analysis; Signal processing; Autoregressive model; Knee joint disorders; Knee osteoarthritis; Parametric modeling; Patella; Physiological patellofemoral crepitus; Vibration arthrometry; Joints (anatomy); aged; article; articular cartilage; cartilage degeneration; clinical article; controlled study; dynamometry; female; goniometry; human; joint mobility; knee arthrography; knee disease; knee osteoarthritis; male; patellofemoral joint; power spectrum; vibration; Aged; Biomedical Engineering; Cartilage, Articular; Case-Control Studies; Female; Humans; Knee Joint; Male; Osteoarthritis; Vibration
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science