Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Public Health / 公共衛生學院
  3. Epidemiology and Preventive Medicine / 流行病學與預防醫學研究所
  4. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers
 
  • Details

A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers

Journal
Frontiers in psychiatry
Journal Volume
9
Journal Issue
JUL
Date Issued
2018
Author(s)
Lin, Eugene
PO-HSIU KUO  
Liu, Yu-Li
Yu, Younger W-Y
Yang, Albert C
DOI
https://api.elsevier.com/content/abstract/scopus_id/85049845461
10.3389/fpsyt.2018.00290
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/412837
URL
https://api.elsevier.com/content/abstract/scopus_id/85049845461
Abstract
In the wake of recent advances in scientific research, personalized medicine using deep learning techniques represents a new paradigm. In this work, our goal was to establish deep learning models which distinguish responders from non-responders, and also to predict possible antidepressant treatment outcomes in major depressive disorder (MDD). To uncover relationships between the responsiveness of antidepressant treatment and biomarkers, we developed a deep learning prediction approach resulting from the analysis of genetic and clinical factors such as single nucleotide polymorphisms (SNPs), age, sex, baseline Hamilton Rating Scale for Depression score, depressive episodes, marital status, and suicide attempt status of MDD patients. The cohort consisted of 455 patients who were treated with selective serotonin reuptake inhibitors (treatment-response rate = 61.0%; remission rate = 33.0%). By using the SNP dataset that was original to a genome-wide association study, we selected 10 SNPs (including ABCA13 rs4917029, BNIP3 rs9419139, CACNA1E rs704329, EXOC4 rs6978272, GRIN2B rs7954376, LHFPL3 rs4352778, NELL1 rs2139423, NUAK1 rs2956406, PREX1 rs4810894, and SLIT3 rs139863958) which were associated with antidepressant treatment response. Furthermore, we pinpointed 10 SNPs (including ARNTL rs11022778, CAMK1D rs2724812, GABRB3 rs12904459, GRM8 rs35864549, NAALADL2 rs9878985, NCALD rs483986, PLA2G4A rs12046378, PROK2 rs73103153, RBFOX1 rs17134927, and ZNF536 rs77554113) in relation to remission. Then, we employed multilayer feedforward neural networks (MFNNs) containing 1-3 hidden layers and compared MFNN models with logistic regression models. Our analysis results revealed that the MFNN model with 2 hidden layers (area under the receiver operating characteristic curve (AUC) = 0.8228 ± 0.0571; sensitivity = 0.7546 ± 0.0619; specificity = 0.6922 ± 0.0765) performed maximally among predictive models to infer the complex relationship between antidepressant treatment response and biomarkers. In addition, the MFNN model with 3 hidden layers (AUC = 0.8060 ± 0.0722; sensitivity = 0.7732 ± 0.0583; specificity = 0.6623 ± 0.0853) achieved best among predictive models to predict remission. Our study indicates that the deep MFNN framework may provide a suitable method to establish a tool for distinguishing treatment responders from non-responders prior to antidepressant therapy.
Subjects
antidepressant; deep learning; genome-wide association studies; major depressive disorder; multilayer feedforward neural networks; personalized medicine; single nucleotide polymorphisms
Antidepressant; Deep learning; Genome-wide association studies; Major depressive disorder; Multilayer feedforward neural networks; Personalized medicine; Single nucleotide polymorphisms
SDGs

[SDGs]SDG3

Other Subjects
biological marker; citalopram; escitalopram; fluoxetine; paroxetine; ABCA13 gene; adult; age; ARNTL gene; Article; BNIP3 gene; CACNA1E gene; CAMK1D gene; cohort analysis; EXOC4 gene; female; GABRB3 gene; gene; gene locus; genetic susceptibility; genome-wide association study; GRIN2B gene; GRM8 gene; Hamilton Depression Rating Scale; human; LHFPL3 gene; machine learning; major clinical study; major depression; male; molecular genetics; NAALADL2 gene; NCALD gene; NELL1 gene; NUAK1 gene; PLA2G4A gene; PREX1 gene; PROK2 gene; RBFOX1 gene; remission; sex difference; single nucleotide polymorphism; SLIT3 gene; social status; suicide attempt; treatment response; ZNF536 gene
Publisher
FRONTIERS MEDIA SA
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science