Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Physiology / 生理學科所
  4. Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase
 
  • Details

Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase

Journal
PLoS ONE
Journal Volume
9
Journal Issue
5
Date Issued
2014
Author(s)
Zhu, W.
Gao, Y.
Che-Feng Chang  
Wan, J.-R.
Zhu, S.-S.
Wang, J.
DOI
10.1371/journal.pone.0097423
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition. Existing preclinical ICH models focus largely on striatum but neglect other brain areas such as ventricle, cortex, and hippocampus. Clinically, however, hemorrhagic strokes do occur in these other brain regions. In this study, we established mouse hemorrhagic models that utilize stereotactic injections of autologous whole blood or collagenase to produce ventricular, cortical, and hippocampal injury. We validated and characterized these models by histology, immunohistochemistry, and neurobehavioral tests. In the intraventricular hemorrhage (IVH) model, C57BL/6 mice that received unilateral ventricular injections of whole blood demonstrated bilateral ventricular hematomas, ventricular enlargement, and brain edema in the ipsilateral cortex and basal ganglia at 72 h. Unilateral injections of collagenase (150 U/ml) caused reproducible hematomas and brain edema in the frontal cortex in the cortical ICH (c-ICH) model and in the hippocampus in the hippocampal ICH (h-ICH) model. Immunostaining revealed cellular inflammation and neuronal death in the periventricular regions in the IVH brain and in the perihematomal regions in the c-ICH and h-ICH brains. Locomotor abnormalities measured with a 24-point scoring system were present in all three models, especially on days 1, 3, and 7 post-ICH. Locomotor deficits measured by the wire-hanging test were present in models of IVH and c-ICH, but not h-ICH. Interestingly, mice in the c-ICH model demonstrated emotional abnormality, as measured by the tail suspension test and forced swim test, whereas h-ICH mice exhibited memory abnormality, as measured by the novel object recognition test. All three ICH models generated reproducible brain damage, brain edema, inflammation, and consistent locomotor deficits. Additionally, the c-ICH model produced emotional deficits and the h-ICH model produced cognitive deficits. These three models closely mimic human ICH and should be useful for investigating the pathophysiology of ICH in ventricle, cortex, and hippocampus and for evaluating potential therapeutic strategies. © 2014 Zhu et al.
Publisher
PUBLIC LIBRARY SCIENCE
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science