Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Toxicology / 毒理學研究所
  4. Neurotoxicity of mycotoxin citrinin: Novel evidence in developing zebrafish and underlying mechanisms in human neuron cells
 
  • Details

Neurotoxicity of mycotoxin citrinin: Novel evidence in developing zebrafish and underlying mechanisms in human neuron cells

Journal
Food and Chemical Toxicology
Journal Volume
171
Date Issued
2023-01
Author(s)
Tsai, Jui-Feng
Wu, Ting-Shuan
Yu, Feng-Yih
Liu, Biing-Hui  
DOI
10.1016/j.fct.2022.113543
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/628570
URL
https://api.elsevier.com/content/abstract/scopus_id/85143865046
Abstract
Citrinin (CTN) is a mycotoxin that is found as a contaminant in various types of food/feed grains and fermented food supplements. Previous studies have already established the nephrotoxicity and hepatotoxicity of CTN, but the neurotoxicity of CTN has not been clearly examined. In this study, CTN at 2-20 μM was first found to interfere with the neural ganglia formation and locomotive behavior of embryonic zebrafish, a vertebrate animal model, at 24 hpf and 6 dpf, respectively. Further exposure of human neuroblastoma SH-SY5Y cells to 10 and 20 μM CTN for 72 h indicated that pathways responsible for neuron differentiation and projection guidance were down-regulated while oxidative stress and electron transport chain pathways were up-regulated based on the enrichment results of GSEA in the transcriptomic profiling. PCR analysis verified that CTN significantly down-regulated the expression of marker genes involved in neuron differentiation and synaptic signaling. CTN at the doses impairing cellular neurite outgrowth did not trigger mitochondrial oxidative stress and dysfunction. The neurotoxic mechanisms of CTN provide new information that is valuable in the assessment of CTN-related health risk for the general public.
Subjects
Citrinin; Human neuronal cell; Neurotoxicity; Transcriptomic analysis; Zebrafish vertebrate model
Publisher
Elsevier Ltd
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science