Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. The Growth of Graphene on Nickel Silicide Substrates
 
  • Details

The Growth of Graphene on Nickel Silicide Substrates

Date Issued
2016
Date
2016
Author(s)
Lee, Chia-Hao
DOI
10.6342/NTU201601844
URI
http://ntur.lib.ntu.edu.tw//handle/246246/273150
Abstract
Graphene is a two-dimensional crystal of carbon atoms packed in a honeycomb structure with the sp2 bonding, and it has been in the focus of intensive researches due to its unique physical properties. For almost ten years, the synthesis of large-area high-quality graphene has been an important issue, but there still remain some problems in the most routinely used chemical vapor deposition (CVD) process. First of all, the high growth temperature in the CVD method is unfavorable for integrating it with the current Si-based semiconductor technology. Secondly, even graphene can be grown on other metal substrates, the application of graphene still requires complicated transfer procedures, in which graphene is easily damaged and degraded. In this research, we propose to use various nickel silicide thin films on Si (111) wafer as the growth substrate, such as Ni2Si, NiSi and NiSi2. Since nickel silicides have been used as metal contacts in very-large-scale integration (VLSI) technology for more than 30 years, there is a great opportunity to integrate graphene into the technology. In this study, graphene growth is conducted in an ultra-high vacuum CVD (UHVCVD) system. The catalytic abilities of the three silicides are compared in two different growth methods, including the CVD and solid-phase precipitation method. We find that Ni2Si has the best catalytic ability. We also find that coronene with a polycyclic structure can further enhance the formation of C-C sp2 and sp3 bonding for the growth of carbon materials. In this work, we use transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to study the surface morphology and crystal quality of the nickel silicide substrates. We also use Raman spectroscopy to evaluate the quality of graphene.
Subjects
graphene
nickel silicides
ultra-high vacuum chemical vapor deposition
solid-phase precipitation
coronene
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-105-R03527022-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):f48b8d7ed26d474de77423be61ea3589

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science