Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning
Journal
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Journal Volume
14556 LNCS
ISBN
9783031533105
Date Issued
2024-01-01
Author(s)
Abstract
Deepfake technology has raised concerns about the authenticity of digital content, necessitating the development of effective detection methods. However, the widespread availability of deepfakes has given rise to a new challenge in the form of adversarial attacks. Adversaries can manipulate deepfake videos with small, imperceptible perturbations that can deceive the detection models into producing incorrect outputs. To tackle this critical issue, we introduce Adversarial Feature Similarity Learning (AFSL), which integrates three fundamental deep feature learning paradigms. By optimizing the similarity between samples and weight vectors, our approach aims to distinguish between real and fake instances. Additionally, we aim to maximize the similarity between both adversarially perturbed examples and unperturbed examples, regardless of their real or fake nature. Moreover, we introduce a regularization technique that maximizes the dissimilarity between real and fake samples, ensuring a clear separation between these two categories. With extensive experiments on popular deepfake datasets, including FaceForensics++, FaceShifter, and DeeperForensics, the proposed method outperforms other standard adversarial training-based defense methods significantly. This further demonstrates the effectiveness of our approach to protecting deepfake detectors from adversarial attacks.
Subjects
Adversarial attack | Adversarial training | Deepfake video detection | Forgery detector
Type
conference paper