Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Predicting stroke outcomes based on multi-modal analysis of physiological signals
 
  • Details

Predicting stroke outcomes based on multi-modal analysis of physiological signals

Journal
International Conference on Digital Signal Processing, DSP
Journal Volume
2015-September
Pages
454-457
Date Issued
2015
Author(s)
Huang, Pei-Wen
SUNG-CHUN TANG  
Lin, Yu-Min
Liu, You-Cheng
Jou, Wei-Jung
Jen, Hsiao-I
DAR-MING LAI  
AN-YEU(ANDY) WU  
DOI
10.1109/ICDSP.2015.7251913
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961337409&doi=10.1109%2fICDSP.2015.7251913&partnerID=40&md5=fa0238b34c1a5ca2ffeb84c4691474e7
https://scholars.lib.ntu.edu.tw/handle/123456789/519359
Abstract
Stroke is a leading cause of death and disability. Early prediction of stroke patients' functional outcomes is helpful for treatments. However, current diagnosis machines, such as computed tomography (CT) and magnetic resonance imaging (MRI), are expensive, not portable, and may cause side effects. Additionally, current diagnosis scales, such as National Institutes of Health Stroke Scale (NIHSS), should be evaluated by professional medical staff, and thus cannot be conducted continuously. In this paper, we propose a multi-modal analysis methodology to predict a stroke patient's functional outcome based on physiological signals, including EKG, ABP, and PPG. By applying the multi-modal framework to analyze the stroke patients' physiological signals in intensive care unit (ICU), we find that the accuracy of stroke outcome predictions achieves 82.7%, which performs better than a single-modal built by any single phase. In addition, the joint EKG-ABP-PPG analysis achieves performance comparable to NIHSS, implying that the multi-modal analysis framework has potential for predicting functional outcomes of stroke. © 2015 IEEE.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science