Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. A Comparative Study of Quantitative Models in Phase Field Simulation of Alloy Solidification
 
  • Details

A Comparative Study of Quantitative Models in Phase Field Simulation of Alloy Solidification

Date Issued
2005
Date
2005
Author(s)
Lee, Meng-Han
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/52353
Abstract
The phase field method has been regarded as one of the many methods used to simulate free-boundary problems. It has been four years that our laboratory used the two-dimensional adaptive phase field model to deal with the solidification process, and many fruitful results have been reported. However, due to the numerical nature of this method, it does not support accurate quantitative measurements when simulating the alloy solidification process. The key factors affecting the quantitative modeling, have been clearly identified in recent works (A. Karma, Phys. Rev. Lett. 87, 115701, 2001). The so-called ‘thin-interface analysis’ methodology has consequently been developed to tackle these difficulties, and the feasibility of which has been justified very recently (J. C. Ramirez, C. Beckermann, A. Karma, and H-J. Diepers, Phys. Rev. E 69, 051607, 2004).

In this thesis, we successfully developed a quantitative phase field model by adopting the ‘thin-interface analysis’ methodology. Through careful examinations, we find that results from the present model not only match closely with analytic solutions but are highly identical to other researchers' results. Moreover, we tested the practicability of the Simple-Interface-Model (SIM), proposed by Shih (C. J. Shih, M.S. Diss., National Taiwan University, 2004), on the solute trapping effect. In addition to comparison with sharp-interface model, a comparative study of SIM and ATC model is also reported. The simulated results indicate that SIM is indeed a viable alternative method when suppressing the solute trapping effect. What's more, a full physical explanation of SIM is given for the first time in this thesis.

The last part of this thesis considers the impact that thermalsolutal convection has on the morphological change of the directional solidification process. Preliminary simulation results show that the buoyancy does significantly change the melt/solid interface morphology, due to the lateral change of the concentration profile. This is the first research that uses the phase field simulation method to investigate this phenomenon.
Subjects
量化
相場模式
模擬
簡單界面
固化
quantitative
phase field
simulation
simple-interface
solidification
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science