Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. An acoustic impedance design method for tubular structures with broadband sound insulations and efficient air ventilation
 
  • Details

An acoustic impedance design method for tubular structures with broadband sound insulations and efficient air ventilation

Journal
Applied Acoustics
Journal Volume
220
Date Issued
2024-04-15
Author(s)
Lin, Ding Kai
Xiao, Xi Wen
Yang, Chieh Cheng
Ho, Sheng Yu
Chou, Li Chih
Chiang, Che Hsien
Chen, Jung San
CHIEN-HAO LIU  
DOI
10.1016/j.apacoust.2024.109983
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/641938
URL
https://api.elsevier.com/content/abstract/scopus_id/85189040483
Abstract
In this research, we proposed an acoustic impedance-based design method to increase the soundproofing bandwidths and maintain efficient air ventilation for tubular structures consisting of hollow air-flowing channels. This research has great potential to provide design guidelines based on an acoustic impedance model and even/odd mode analysis for hollow-tube ventilated devices containing resonance and antiresonances. We introduced a thin ventilated structure with a subwavelength thickness of 0.107 λ where λ corresponds to the lowest frequency within the filtering bandwidth, a 19.4 % cross-section open for air passage, and a 10 dB fractional bandwidth of 110.2 % (i.e., 90 % sound energy is blocked), which is broader than that of a conventional Fano-like structure of 44.7 %. To experimentally verify the proposed approach, two prototypes, including lateral-coupled and longitudinal-coupled devices, were designed, fabricated with 3D printing, and experimentally characterized via a commercial-available impedance tube system. The simulations matched the measurements and demonstrated the 10 dB fractional bandwidth of 65 % and 91.5 % and ventilation efficiencies of 21.4 % and 33.4 %, respectively. The main contribution of this work is that the proposed approach can be adopted for lateral or longitudinal coupled ventilated structures with broadband sound insulations and lower the effects of resonance-induced sound transmissions. Besides, the proposed acoustic-impedance model can significantly save the required tremendous computational resources and time compared to FEM simulations. Moreover, the proposed lateral and longitudinal ventilated structures are expected to benefit broadband sound filtering and noise reduction for thin panel or tubular silencers
Subjects
ABCD matrix | Acoustic impedance modeling | Antiresonant mode | Broadband sound insulations | Subwavelength thickness | Ventilated tubular structure
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science