Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Entomology / 昆蟲學系
  4. Online semi-supervised learning applied to an automated insect pest monitoring system
 
  • Details

Online semi-supervised learning applied to an automated insect pest monitoring system

Journal
Biosystems Engineering
Journal Volume
208
Pages
28-44
Date Issued
2021
Author(s)
Rustia D.J.A
Lu C.-Y
Chao J.-J
Wu Y.-F
Chung J.-Y
JU-CHUN HSU  
TA-TE LIN  
DOI
10.1016/j.biosystemseng.2021.05.006
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107280315&doi=10.1016%2fj.biosystemseng.2021.05.006&partnerID=40&md5=01616a0eefd3843ecb76b62b6f6c9831
https://scholars.lib.ntu.edu.tw/handle/123456789/572831
Abstract
The unavailability and variability of training samples are the two essential concerns in the training of deep neural network models for image classification. For automated image monitoring systems, these problems are difficult when training a model through supervised learning methods because of the time and effort required. This paper proposes an adaptive solution to this problem by applying online semi-supervised learning to an automated insect pest monitoring system. The method used includes unsupervised pseudo-labelling of insect images and the training of semi-supervised classifier models for insect image recognition. The pseudo-labelling algorithm includes three major components: image labelling, label reconfirmation, and sample cleaning. Experiments were conducted on two unlabelled 1-year insect image datasets to evaluate the efficacy of the proposed method. It was found that the pseudo-labelling algorithm could achieve accuracy up to 0.963, hence enabling automated training data collection. The temporal improvement of the insect recognition performance by including new training data to retrain the classifier model was comparable in performance to the supervised learning approach as evaluated by cluster density, silhouette score, and F1-score. The proposed method was also able to automatically collect quality samples and train models regardless of the complexity of the images, making it a good alternative to replace laborious supervised learning. The proposed method can prevent contamination of a training dataset when images from new locations are collected. The presented techniques may also be used in other continuous learning applications that require automated training data collection and online model update. ? 2021 IAgrE
Subjects
Automation; Classification (of information); Data acquisition; Deep learning; Deep neural networks; Image classification; Image recognition; Learning systems; Monitoring; Semi-supervised learning; Adaptive solution; Cluster densities; Continuous learning; Image monitoring systems; Monitoring system; Neural network model; Supervised learning approaches; Supervised learning methods; E-learning
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science