Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Atmospheric Sciences / 大氣科學系
  4. A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud-resolving model simulations
 
  • Details

A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud-resolving model simulations

Journal
Atmospheric Science Letters
Date Issued
2023-01-01
Author(s)
Chen, Yi Chang
CHIEN-MING WU  
WEI-TING CHEN  
DOI
10.1002/asl.1150
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/630277
URL
https://api.elsevier.com/content/abstract/scopus_id/85145452492
Abstract
This study introduces a framework to extract the high-dimensional nonlinear relationships among state variables for aggregated convection. The prototype of such a framework is developed that applies the convolutional neural network models (CNN models) to retrieve the cloud characteristics from cloud-resolving model (CRM) simulations. CNN model prediction factors are hidden in the high dimensional weighted parameters in each neural network layer. Therefore, we can dig out relevant physics processes by iterating the CNN models' training process and eliminating the features with the physics explanation we can provide at a given stage. Within a few iterations, explainable nonlinear relationships among variables can be provided. We identified that the averaged cloud water path (CWP), the maximum value of CWP in each cloud, and the cloud coverage rate are essential for identifying aggregation. Furthermore, by analyzing the encoded channels of the CNN model, we found a strong relationship between aggregation, cloud peripherals, and fractal dimensions. The results suggest that the important nonlinear cloud characteristics for identifying the aggregation can be captured with the proper adjustment and limitation of the input data to the CNN models. Our framework provides a possibility that we can explore the high dimensional relationship between the physics process with the assistance of the CNN model.
Subjects
aggregated convection | cloud-resolving model | deep learning
Publisher
WILEY
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science