Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Dual-Filtering for On-Line Simultaneously Estimate Weights and Phase Parameter of Probabilistic Movement Primitives for Human-Robot Collaboration
 
  • Details

Dual-Filtering for On-Line Simultaneously Estimate Weights and Phase Parameter of Probabilistic Movement Primitives for Human-Robot Collaboration

Journal
IEEE International Conference on Intelligent Robots and Systems
Pages
784-790
Date Issued
2021
Author(s)
REN-CHYUAN LUO  
Mai L.
DOI
10.1109/IROS51168.2021.9636654
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124337704&doi=10.1109%2fIROS51168.2021.9636654&partnerID=40&md5=0c437bb6ec5bd69dd4baab962d74a701
https://scholars.lib.ntu.edu.tw/handle/123456789/607269
Abstract
The Probabilistic Movement Primitives (ProMPs) is an essential issue and framework for robotics Learning from Demonstration (LfD). It has been successfully applied to the robotics field in tasks such as skill acquisition and Human-Robot Collaboration (HRC). In this paper, we focus on its adaptability in the HRC scenario, in which the adaptability of the ProMPs allows the robot to predict the future movement of its human partner and plan its movement accordingly, given the observed human movement. Most of the existing works about the application of the ProMPs in HRC either only focus on the estimation of the weights on-line and lack the estimation of the phase parameter or merely depend on the prior distribution of the phase parameter. As a result, these methods can lead to a misinterpretation of the basis matrix when the divergence between the prior distribution and the posterior distribution of the phase parameter becomes large, resulting in a divergence of the estimation of the weights. In this paper, we propose a Dual-Filtering method for the ProMPs, which is able to simultaneously on-line estimate the weights and phase parameter for the ProMPs. The preliminary experimental result demonstrates the proposed method is able to provide better prediction performance and more accurate estimation of the phase parameter in comparison with the previous works. ? 2021 IEEE.
Subjects
Intelligent robots
Robotics
Base matrix
Human movements
Human-robot collaboration
Learning from demonstration
Movement primitives
Phase parameters
Prior distribution
Probabilistics
Skills acquisition
Weight parameters
Parameter estimation
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science