Repository logo
  • English
  • 中文
Log In
  1. Home
 
  • Details

Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors

Journal
Journal of Materials Chemistry A
Journal Volume
7
Journal Issue
4
Pages
1479-1490
Date Issued
2019
Author(s)
Jian S.-L.
Hsiao L.-Y.
Yeh M.-H.
Ho K.-C. 
DOI
10.1039/c8ta07686c
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/408637
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060391031&doi=10.1039%2fc8ta07686c&partnerID=40&md5=a6dd596c1cf1be04eeb7858b21270bcf
Abstract
Owing to their advantages of high power density and a short charging duration, electrochemical supercapacitors (SCs) have received much attention as alternative energy systems for applications in portable electronic devices. The design of an electrode material with high capacitance and promising cycling stability will be a key factor for promoting the development of SC-based electronic systems. In this study, a hybrid structure of a cobalt sulfide nanocage derived from a zeolitic imidazolate framework (ZIF) and interconnected by carbon nanotubes (CNT/CoS) was designed and synthesized as an electrode material for SCs. Carbon nanotubes/ZIF-67 (CNT/ZIF-67) nanocomposites with controlled ZIF-67 particle sizes were systematically studied by varying the mass ratio of CNTs to ZIF-67 during crystallization, followed by subsequent sulfurization with thioacetamide. Benefiting from the porous nanocage architecture and conductive CNTs, the optimized CNT/CoS nanocage exhibited excellent electrochemical performance with an outstanding specific capacitance (2173.1 F g -1 at 5 A g -1 ) and high rate capability (65% retention at 20 A g -1 ). More importantly, a symmetric supercapacitor gave an energy density of 23.3 W h kg -1 at a power density of 3382.2 W kg -1 and impressive long-term stability (96.6% retention after 5000 cycles). These results suggest that the CNT/CoS nanocage is a promising composite for high-performance supercapacitor applications. ? 2019 The Royal Society of Chemistry.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science