Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. School of Veterinary Medicine / 獸醫專業學院
  4. Veterinary Medicine / 獸醫學系
  5. Multitask learning for predicting pulmonary absorption of chemicals
 
  • Details

Multitask learning for predicting pulmonary absorption of chemicals

Journal
Food and Chemical Toxicology
Journal Volume
185
Date Issued
2024-03-01
Author(s)
Chiu, Yu Wen
Tung, Chun Wei
CHIA-CHI WANG  
DOI
10.1016/j.fct.2024.114453
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85183290968&doi=10.1016%2fj.fct.2024.114453&partnerID=40&md5=c574e78cbf201d0caa2b0036a0b310d6
https://scholars.lib.ntu.edu.tw/handle/123456789/639757
URL
https://api.elsevier.com/content/abstract/scopus_id/85183290968
Abstract
Pulmonary absorption is an important route for drug delivery and chemical exposure. To streamline the chemical assessment process for the reduction of animal experiments, several animal-free models were developed for pulmonary absorption research. While Calu-3 and Caco-2 cells and their derived computational models were used in estimating pulmonary permeability, the ex vivo isolated perfused lung (IPL) models are considered more clinically relevant measurements. However, the IPL experiments are resource-consuming making it infeasible for the large-scale screening of potential inhaled toxicants and drugs. In silico models are desirable for estimating pulmonary absorption. This study presented a novel machine learning method that employed an extratrees-based multitask learning approach to predict the IPL absorption rate constant (kaIPL) of various chemicals. The shared permeability knowledge was extracted by simultaneously learning three relevant tasks of Caco-2 and Calu-3 cell permeability and IPL absorption rate. Seven informative physicochemical descriptors were identified. A rigorous evaluation of the developed prediction model showed good performance with a high correlation between predictions and observations (r = 0.84) in the independent test dataset. Two case studies of inhalation drugs and respiratory sensitizers revealed the potential application of this model, which may serve as a valuable tool for predicting pulmonary absorption of chemicals.
Subjects
Caco-2 | Calu-3 | Isolated perfused lung (IPL) | Multitask learning | Pulmonary absorption | Transfer learning
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science