Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Intelligent fault detection, diagnosis and health evaluation for industrial robots
 
  • Details

Intelligent fault detection, diagnosis and health evaluation for industrial robots

Journal
Mechanika
Journal Volume
27
Journal Issue
1
Pages
70-79
Date Issued
2021
Author(s)
Hsu H.-K
Ting H.-Y
Huang M.-B
HAN-PANG HUANG  
DOI
10.5755/J02.MECH.24401
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102644831&doi=10.5755%2fJ02.MECH.24401&partnerID=40&md5=fac0daffb06c1d75f65b3be272dd1bb9
https://scholars.lib.ntu.edu.tw/handle/123456789/576139
Abstract
The focus of this study is development of an intelligent fault detection, diagnosis and health evaluation system for real industrial robots. The system uses principal component analysis based statistical process control with Nelson rules for online fault detection. Several suitable Nelson rules are chosen for sensitive detection. When a variation is detected, the system performs a diagnostic operation to acquire features of the time domain and the frequency domain from the motor encoder, motor current sensor and external accelerometer for fault diagnosis with a multi-class support vector machine. Additionally, a fuzzy logic based robot health index generator is proposed for evaluating the health of the robot, and the generator is an original design to reflect the health status of the robot. Finally, several real aging-related faults are implemented on a six-axis industrial robot, DRV90L7A6213N by Delta Electronics, and the proposed system is validated effectively by the experimental results. ? 2021 Kauno Technologijos Universitetas. All rights reserved.
Subjects
Economic and social effects; Electric fault currents; Frequency domain analysis; Fuzzy logic; Health; Industrial robots; Intelligent robots; Machine design; Statistical process control; Support vector machines; Frequency domains; Health evaluation; Health indices; Motor currents; Multi-class support vector machines; On-line fault detection; Original design; Sensitive detection; Fault detection
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science