Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Impact of Code Deobfuscation and Feature Interaction in Android Malware Detection
 
  • Details

Impact of Code Deobfuscation and Feature Interaction in Android Malware Detection

Journal
IEEE Access
Journal Volume
9
Pages
123208-123219
Date Issued
2021
Author(s)
Chen Y.-C
Chen H.-Y
Takahashi T
Sun B
TSUNG-NAN LIN  
DOI
10.1109/ACCESS.2021.3110408
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114742315&doi=10.1109%2fACCESS.2021.3110408&partnerID=40&md5=4b20a0ac4842e1f6cfee81a1ac23e4fc
https://scholars.lib.ntu.edu.tw/handle/123456789/607326
Abstract
With more than three million applications already in the Android marketplace, various malware detection systems based on machine learning have been proposed to prevent attacks from cybercriminals; most of these systems use static analyses to extract application features. However, many features generated by static analyses can be easily thwarted by obfuscation techniques. Therefore, several researchers have addressed this obfuscation problem with obfuscation-invariant features. However, to the best of our knowledge, no researcher has utilized deobfuscation techniques. To this end, we adopt a code deobfuscation technique with an Android malware detection system and investigate its effects. Experimental results indicate that code deobfuscation can successfully retrieve useful information concealed by obfuscation. Further, we propose interaction terms based on identified feature interactions. The proposed interaction terms aim to eliminate the interference caused by the size of the application and other features because many feature values are correlated to the size of the application. In addition, the experimental results indicate that these interaction terms have a high ranking in terms of feature importance values. Our proposed Android malware detection model achieves 99.55% accuracy and a 94.61% F1-score with the well-known Drebin dataset, which is better than the performance of previous works. ? 2013 IEEE.
Subjects
Android malware detection
classification
code deobfuscation
feature interaction
machine learning
static analysis
structural feature
Android (operating system)
Malware
Static analysis
Android malware
Cybercriminals
Deobfuscation
Feature interactions
Feature values
Interaction term
Invariant features
Malware detection
Mobile security
SDGs

[SDGs]SDG16

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science