Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Business Administration / 工商管理學系暨商學研究所
  4. Novel Ant Colony Optimization Methods for Simplifying Solution Construction in Vehicle Routing Problems
 
  • Details

Novel Ant Colony Optimization Methods for Simplifying Solution Construction in Vehicle Routing Problems

Journal
IEEE Transactions on Intelligent Transportation Systems
Journal Volume
17
Journal Issue
11
Pages
3132-3141
Date Issued
2016
Author(s)
Wang X.
TSAN MING CHOI  
Liu H.
Yue X.
DOI
10.1109/TITS.2016.2542264
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994504382&doi=10.1109%2fTITS.2016.2542264&partnerID=40&md5=55b2f52f5cbc06352da77d187cbc3bb2
https://scholars.lib.ntu.edu.tw/handle/123456789/612266
Abstract
As a novel evolutionary searching technique, ant colony optimization (ACO) has gained wide research attention and can be used as a tool for optimizing an array of mathematical functions. In transportation systems, when ACO is applied to solve the vehicle routing problem (VRP), the path of each ant is only "part" of a feasible solution. In other words, multiple ants' paths may constitute one feasible solution. Previous works mainly focus on the algorithm itself, such as revising the pheromone updating scheme and combining ACO with other optimization methods. However, this body of literature ignores the important procedure of constructing feasible solutions with those "parts". To overcome this problem, this paper presents a novel ACO algorithm (called AMR) to solve the VRP. The proposed algorithm allows ants to go in and out the depots more than once until they have visited all customers, which simplifies the procedure of constructing feasible solutions. To further enhance AMR, we propose two extensions (AMR-SA and AMR-SA-II) by integrating AMR with other saving algorithms. The computational results for standard benchmark problems are reported and compared with those from other ACO methods. Experimental results indicate that the proposed algorithms outperform the existing ACO algorithms. ? 2016 IEEE.
Subjects
Ant colony optimization (ACO); feasible solutions; paths; saving algorithm; vehicle routing problem (VRP)
Other Subjects
Artificial intelligence; Functions; Optimization; Vehicle routing; Vehicles; Ant Colony Optimization (ACO); Feasible solution; paths; Saving algorithm; Vehicle routing problem; Ant colony optimization
Publisher
Institute of Electrical and Electronics Engineers Inc.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science