Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Probability-based power dispatch in wind-integrated electrical grid for energy storage capacity determination
 
  • Details

Probability-based power dispatch in wind-integrated electrical grid for energy storage capacity determination

Journal
ASME Design Engineering Technical Conference
ISBN
9780791850107
Date Issued
2016
Author(s)
Hung, T.-C.
Chan, K.-Y.  
DOI
http://www.scopus.com/inward/record.url?eid=2-s2.0-85008235378&partnerID=MN8TOARS
32487884
10.1115/DETC2016-59809
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-85008235378&partnerID=MN8TOARS
https://scholars.lib.ntu.edu.tw/handle/123456789/403708
URL
http://www.scopus.com/inward/record.url?eid=2-s2.0-85008235378&partnerID=MN8TOARS
Abstract
© Copyright 2016 by ASME. Implementing microgrids has become a current trend in the electric utility industry to either improve system reliability or energy access for energy sustainability. This study proposes a probability-based strategy for both long- and short-term power dispatch with wind and load uncertainty. The long-term power dispatch is used to determine a suitable capacity of energy storage, and the short-term power dispatch is used for real-time operation. For both short- and long-term power dispatch, the trends of wind energy and electricity demand are extracted using the wavelet packet analysis method and the moving average technique. The uncertainties from wind speed and power generation data are modeled with log-normal and extreme value distributions, respectively. From the obtained power dispatch and model forecasting, the capacity of energy storage is determined. To validate the proposed approach, a real-time operating simulation is used as a case study to observe the behavior of the wind-integrated electrical system. Results show that the proposed method can estimate the uncertainty variation range of wind energy and the state of charge of energy storage effectively.
Event(s)
the ASME Design Engineering Technical Conference
Subjects
Design under uncertainty; Electricity demand forecasting; Energy storage sizing; Microgrid; Power dispatch; Wind energy forecasting
SDGs

[SDGs]SDG7

Other Subjects
Battery management systems; Computer aided design; Design; Digital storage; Electric energy storage; Electric power utilization; Electric utilities; Energy storage; Forecasting; Uncertainty analysis; Wind; Wind power; Design under uncertainty; Electricity demand forecasting; Energy forecasting; Micro grid; Power dispatch; Electric load dispatching
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science