Publication:
Composite Convex Minimization Involving Self-concordant-Like Cost Functions.

Loading...
Thumbnail Image

Date

2015

Authors

Tran-Dinh, Quoc
Tran-Dinh Q;Li Y.-H;Cevher V.
Yen-Huan Li
Cevher, Volkan

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

The self-concordant-like property of a smooth convex function is a new analytical structure that generalizes the self-concordant notion. While a wide variety of important applications feature the selfconcordant- like property, this concept has heretofore remained unexploited in convex optimization. To this end, we develop a variable metric framework of minimizing the sum of a “simple” convex function and a self-concordant-like function.We introduce a new analytic step-size selection procedure and prove that the basic gradient algorithm has improved convergence guarantees as compared to “fast” algorithms that rely on the Lipschitz gradient property. Our numerical tests with real-data sets show that the practice indeed follows the theory. © Springer International Publishing Switzerland 2015.

Description

Metz, France

Keywords

Citation