Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Prediction of Gas and Liquid Solubility in Organic Polymers Based on the PR+COSMOSAC Equation of State
 
  • Details

Prediction of Gas and Liquid Solubility in Organic Polymers Based on the PR+COSMOSAC Equation of State

Journal
Industrial and Engineering Chemistry Research
Journal Volume
57
Journal Issue
31
Pages
10628-10639
Date Issued
2018
Author(s)
Wang L.-H.
Hsieh C.-M.
Lin S.-T.  
DOI
10.1021/acs.iecr.8b01780
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/406859
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049369868&doi=10.1021%2facs.iecr.8b01780&partnerID=40&md5=7e16a19315c21f6bd28939ee524cf505
Abstract
The predictive capability of gas and liquid solubility in organic polymers is examined based on the combination of the PR+COSMOSAC equation of state (EOS) and the COSMO-SAC liquid model through three different excess Gibbs free energy based mixing rules, modified Huron-Vidal (MHV1), Wong-Sandler (WS), and self-consistent mixing rule (SCMR). Using 81 binary systems consisting of 23 gas molecules and 22 polymers (81 data points) with temperatures ranging from 298 to 461 K, it is found that WS and SCMR can provide reasonable prediction accuracy (RMSE(log 10 k H ) = 0.746 and 1.725, respectively) for the Henry's law parameter in polymers, while the MHV1 mixing rule results in a much larger error (RMSE (log 10 k H ) = 3.118) compared to experiment. The WS and SCMR, but not MHV1, provide a converged value of Henry's law parameter of gas in polymers as the molecular weight of the polymer increases. We further propose a modification to the SCMR (mSCMR) that results in significant improvement in the solubility prediction in polymers (RMSE (log 10 k H ) = 0.305) and the binary vapor-liquid equilibrium for common molecules. In this new approach, referred to as PRCS/mSCMR/COSMOSAC, all species-dependent parameters are determined from quantum mechanical (QM) calculations, and no adjustable parameters are required for the gas-polymer binary pairs. We believe that this new method may provide useful assistance to the development of polymer membrane-based gas separation processes especially when experimental information is not yet available. ? 2018 American Chemical Society.
SDGs

[SDGs]SDG13

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science