Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Enzymes for energy. Structural computational analysis, substrate association and product dissociation from the thermophilic esterase of Alicyclobacillus acidocaldarius: Implications in biodiesel production
 
  • Details

Enzymes for energy. Structural computational analysis, substrate association and product dissociation from the thermophilic esterase of Alicyclobacillus acidocaldarius: Implications in biodiesel production

Journal
Journal of Molecular Catalysis B: Enzymatic
Journal Volume
97
Pages
156-168
Date Issued
2013
Author(s)
Whiteley C.G.
Lee D.-J.  
DOI
10.1016/j.molcatb.2013.08.008
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/407731
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883642596&doi=10.1016%2fj.molcatb.2013.08.008&partnerID=40&md5=3be8c748ff566ef914f667584c0f432b
Abstract
Enzymes, as natural catalysts, are prime players in the search for the new efficient environmentally friendly production of biofuels. The different permutations of the many variables, such as source, selectivity, stability and structure of substrates and enzyme, immobilization and/or life-time of the catalyst, temperature and time of the reaction and solvent constituency, polarity and quantity make the use of enzymes for this purpose a daunting task. An esterase is a unique family of enzymes that can either esterify a fatty acid in a non-polar solvent containing a stoichiometric amount of short-chain alcohol or hydrolyse an ester into the corresponding acid and alcohol. Even though tolerance of the esterase to such solvents increases the solubility of the substrates and assists in the recovery of product final product yield is controlled provided a specific amount of water is also present influencing the enzyme-substrate equilibrium and the lipid-water interface - an area that is occupied by the esterase. Knowing the composition of the solvent medium needed for esterase activity is complicated by knowledge of the structure of the binding pocket, substrate entry into the enzyme active channel, the flexibility of the enzyme itself, unwanted hydrolytic reactions and total changes in the thermodynamic footprint between substrate and enzyme. This article explores a computational structural analysis of an esterase investigating the substrate-enzyme binding site and uses simple simulations and molecular dynamics to address the mechanism(s) and pathways that products - fatty acid esters (biodiesel) - dissociate from the enzyme. Two simulations in hexane:MeOH (9:1) and water as well as hydrogen bond interactions of the substrate/product with the enzyme, RMSD and B-factor calculations and the presence of water molecules in enzyme active binding pocket dictate which entry or exit pathway is preferable. ? 2013 Elsevier B.V. All rights reserved.
Subjects
Biodiesel
Computational analysis
Esterase
Molecular dynamics
Substrate binding/product unbinding
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science