Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Energy recovery from biomass by fast pyrolysis
 
  • Details

Energy recovery from biomass by fast pyrolysis

Journal
Procedia Engineering
Journal Volume
90
Pages
669-674
Date Issued
2014
Author(s)
Ward J.  
Rasul M.G.
Bhuiya M.M.K.
DOI
10.1016/j.proeng.2014.11.791
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/408933
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923292454&doi=10.1016%2fj.proeng.2014.11.791&partnerID=40&md5=e063d1e81500bc03084cfbc49b078ad7
Abstract
Bioenergy is now accepted as having the potential to provide the major part of the projected renewable energy provisions of the future. It has been ascertained that the biomass is a common form of renewable energy and widely used in the world. The use of biomass to provide energy has been identified as a fundamental to the development of civilization. There are different types of thermo-chemical conversion technologies available for converting biomass into energy which stretches from direct burning to more complex processes including gasification or pyrolysis. Among these processes, pyrolysis has become increasingly popular because it gives products of better quality compared to any other thermo-chemical conversion processes for biomass. A computational fluid dynamics (CFD) model is developed using Advanced System for Process Engineering (ASPEN) PLUS which is a computer assisted energy simulation tool to analyse and optimize the performance of pyrolysis process i.e., to maximize the yields of pyrolysis products such as bio-oil, biochar and syngas as a function of pyrolysis temperature, operating conditions, and physical and chemical properties of biomass. The simulation was done for four types of biomass, namely shredded green waste, pine chips, wood and birch. The results show that the shredded green waste is the best for bio-oil production which possesses high cellulose and low moisture content. The bio-oil of up to 58% can be produced from this material. ? 2014 The Authors. Published by Elsevier Ltd.
Subjects
ASPEN PLUS software
Biomass fast pyrolysis
Simulation and modelling of pyrolysis process
SDGs

[SDGs]SDG7

Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science