Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Exploring an Interesting Si Source from Photovoltaic Industry Waste and Engineering It as a Li-Ion Battery High-Capacity Anode
 
  • Details

Exploring an Interesting Si Source from Photovoltaic Industry Waste and Engineering It as a Li-Ion Battery High-Capacity Anode

Journal
ACS Sustainable Chemistry and Engineering
Journal Volume
4
Journal Issue
10
Pages
5769-5775
Date Issued
2016
Author(s)
Huang T.-Y.
Selvaraj B.
Lin H.-Y.
Sheu H.-S.
Song Y.-F.
Wang C.-C.
Hwang B.J.
Wu N.-L.  
DOI
10.1021/acssuschemeng.6b01749
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/409031
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84989869352&doi=10.1021%2facssuschemeng.6b01749&partnerID=40&md5=6852c5100907728fbe34928c01711fc8
Abstract
Low cost electrode materials are essential for the expansion of the applications of large-format Li-ion batteries (LIBs). Kerf-loss (KL) Si waste from the photovoltaic industry represents a low cost, high-purity Si source for the production of high capacity anodes of LIBs. Producing an energy storage device from solar-panel industry waste is a potential environment-friendly energy development. This study addressed the challenges of employing KL Si as high-capacity LIB anode. The abrasive SiC particle impurities in KL waste powder were used not only as a milling agent to reduce silicon particle size but also as mechanically and electrochemically robust pillars that resist microstructural degradation of the electrode caused by the expansion of Si during lithiation. High energy ball milling of Si with rigid SiC produced fused nanosilicon particles that were supported on micrometer-sized SiC; this resulted in substantially mitigated capacity fading. In addition, an effective conducting network was formed by incorporating Ni into the Si agglomerates, enabling high rate density and maintaining high powder tap density. The resulting Si-SiC-Ni composite powder exhibits high capacity and long-term stability. ? 2016 American Chemical Society.
Subjects
High-energy ball milling
Kerf loss
Practical Si anode
Si-SiC-Ni composite
SDGs

[SDGs]SDG7

Other Subjects
Anodes; Ball milling; Electric batteries; Electrodes; Milling (machining); Nickel; Particle size; Silicon; Silicon carbide; Environment friendly; High capacity anode; High-energy ball milling; Kerf loss; Long term stability; Microstructural degradation; Photovoltaic industry; Si anodes; Lithium-ion batteries
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science