Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Simulation and design of catalytic membrane reactor for hydrogen production via methylcyclohexane dehydrogenation
 
  • Details

Simulation and design of catalytic membrane reactor for hydrogen production via methylcyclohexane dehydrogenation

Journal
International Journal of Hydrogen Energy
Journal Volume
42
Journal Issue
42
Pages
26296-26307
Date Issued
2017
Author(s)
Chen Y.-R.
Tsuru T.
Kang D.-Y.  
DOI
10.1016/j.ijhydene.2017.08.174
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/409762
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029705551&doi=10.1016%2fj.ijhydene.2017.08.174&partnerID=40&md5=b4442d75c246ce8844b35806f8a54f0d
Abstract
In this study, we sought to optimize the performance of catalytic membrane reactors for the production of hydrogen through the dehydrogenation of methylcyclohexane. Finite element method was used to simulate the radial and axial distributions of velocity, temperature, and concentrations. We examined a number of design parameters and their effects on reactor performance, including the feed flow rate of methylcyclohexane, the mass of catalysts, and pressure on the permeation side of the hydrogen-selective membrane. Dimensionless analysis using the Damk?hler number and P?clet number was also employed in the optimization of the reactor. The catalytic membrane reactor optimized in this work achieved a hydrogen production rate more than five times higher than that of existing systems based on the same reactor volume. Simulations at the microscopic scale were also performed to investigate the effects of the pore size and the porosity of the catalytic layer on hydrogen production. ? 2017 Hydrogen Energy Publications LLC
Subjects
Catalytic membrane reactor
Finite element method
Hydrogen production
Methylcyclohexane dehydrogenation
Modeling
SDGs

[SDGs]SDG7

Other Subjects
Bioreactors; Dehydrogenation; Finite element method; Membranes; Models; Pore size; Axial distribution; Catalytic membrane reactors; Dimensionless analysis; Hydrogen production rate; Hydrogen selective membrane; Methylcyclohexane; Production of hydrogen; Reactor performance; Hydrogen production
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science