Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Controllable occurrence of free-standing lipid membranes on nanograting structured supports
 
  • Details

Controllable occurrence of free-standing lipid membranes on nanograting structured supports

Journal
ACS Applied Materials and Interfaces
Journal Volume
6
Journal Issue
15
Pages
12261-12269
Date Issued
2014
Author(s)
Peng P.-Y.
Chiang P.-C.
Chao L.  
DOI
10.1021/am501861a
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/410665
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906274798&doi=10.1021%2fam501861a&partnerID=40&md5=6a2fbb8e6c30842ecf41fec1b82432a0
Abstract
Supported lipid bilayers (SLBs) have been widely used to study protein-lipid membrane interactions because their planar geometry is suitable for many surface analysis tools. However, the friction coupling between the support and the membrane can influence the properties of biomolecules in the membrane. Many studies have attempted to span SLBs over nanostructured supports to create free-standing regions in SLBs for biosensor applications. However, membranes following the support surface contour are more frequently observed than are free-standing membranes on structured supports, indicating that the parameter range suitable for formation of free-standing SLBs might be narrow and more information is necessary to understand the required conditions. The objective of this study was to estimate the system energies of free-standing and contour-following membrane states and determine which state is the most energetically favorable under various conditions. For a lipid membrane preferring to stay close to the support, an energy reward occurs when they are in close proximity; however, increasing the contact area on a structured surface can result in an energy penalty because of the bending of the lipid bilayer. Whether the energy reward or the energy penalty dominates could determine the membrane state. We used the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and the Helfrich bending theory to relate the energy sizes to experimentally controllable parameters. We experimentally examined whether the membrane state followed the model prediction when we used various buffer ionic strengths, various lipid types, and nanograting supports with three different geometries. Because it is difficult to observe the experimental membrane state directly at the nanoscale, we developed a method to use the fluorescence recovery shape change after photobleaching to distinguish experimental membrane states at the micrometer scale. Our experimental results closely matched the theoretical predictions, suggesting that the developed model can be used to predict suitable conditions for formation of free-standing bilayers on nanostructured solid supports. ? 2014 American Chemical Society.
Subjects
contour-following
extended DLVO theory
free-standing
nanograting structured support
supported lipid bilayers
trench-spanning membranes
SDGs

[SDGs]SDG7

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science