Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Learning to predict the cost-per-click for your ad words
 
  • Details

Learning to predict the cost-per-click for your ad words

Journal
ACM International Conference Proceeding Series
Pages
2291-2294
ISBN
9781450311564
Date Issued
2012
Author(s)
Wang C.-J.
HSIN-HSI CHEN  
DOI
10.1145/2396761.2398623
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/413137
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84871045325&doi=10.1145%2f2396761.2398623&partnerID=40&md5=80f8b9d66ea3658994d898dd9a2e9d48
Abstract
In Internet ad campaign, ranking of an ad on search result pages depends on a cost-per-click (CPC) of ad words offered by an advertiser and a quality score estimated by a search engine. Bidding for ad words with a higher CPC is more competitive than bidding for the same ad words with a lower CPC in the ad ranking competition. However, offering a higher CPC will increase a burden on advertisers. In contrast, offering a lower CPC may decrease the exposure rate of their ads. Thus, how to select an appropriate CPC for ad words is indispensable for advertisers. In this paper, we extract different semantic levels of features, such as named entities, topic terminologies, and individual words from a large-scale real-world ad words corpus, and explore various learning based prediction algorithms. The thorough experimental results show that the CPC prediction models considering more ad words semantics achieve better prediction performance, and the prediction model using the support vector regression (SVR) and features from all semantic levels performs the best. ? 2012 ACM.
Subjects
ad ranking
CPC prediction
search engine optimization
Description
21st ACM International Conference on Information and Knowledge Management, CIKM 2012, 29 October 2012 through 2 November 2012, Maui, HI
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science