Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/437095
Title: Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan
Authors: Chen, P.-C.
Wang, Y.-H.
You, G.J.-Y.
Wei, C.-C.
JIING-YUN YOU 
Keywords: Discrete wavelet analysis; Ensemble empirical mode decomposition; Identification of distribution and trends; Non-stationarity; Return period
Issue Date: 2017
Journal Volume: 545
Start page/Pages: 197-211
Source: Journal of Hydrology
Abstract: 
Future climatic conditions likely will not satisfy stationarity assumption. To address this concern, this study applied three methods to analyze non-stationarity in hydrologic conditions. Based on the principle of identifying distribution and trends (IDT) with time-varying moments, we employed the parametric weighted least squares (WLS) estimation in conjunction with the non-parametric discrete wavelet transform (DWT) and ensemble empirical mode decomposition (EEMD). Our aim was to evaluate the applicability of non-parameter approaches, compared with traditional parameter-based methods. In contrast to most previous studies, which analyzed the non-stationarity of first moments, we incorporated second-moment analysis. Through the estimation of long-term risk, we were able to examine the behavior of return periods under two different definitions: the reciprocal of the exceedance probability of occurrence and the expected recurrence time. The proposed framework represents an improvement over stationary frequency analysis for the design of hydraulic systems. A case study was performed using precipitation data from major climate stations in Taiwan to evaluate the non-stationarity of annual maximum daily precipitation. The results demonstrate the applicability of these three methods in the identification of non-stationarity. For most cases, no significant differences were observed with regard to the trends identified using WLS, DWT, and EEMD. According to the results, a linear model should be able to capture time-variance in either the first or second moment while parabolic trends should be used with caution due to their characteristic rapid increases. It is also observed that local variations in precipitation tend to be overemphasized by DWT and EEMD. The two definitions provided for the concept of return period allows for ambiguous interpretation. With the consideration of non-stationarity, the return period is relatively small under the definition of expected recurrence time comparing to the estimation using the reciprocal of the exceedance probability of occurrence. However, the calculation of expected recurrence time is based on the assumption of perfect knowledge of long-term risk, which involves high uncertainty. When the risk is decreasing with time, the expected recurrence time will lead to the divergence of return period and make this definition inapplicable for engineering purposes. © 2016 Elsevier B.V.
URI: https://scholars.lib.ntu.edu.tw/handle/123456789/437095
DOI: 10.1016/j.jhydrol.2016.12.001
SDG/Keyword: Discrete wavelet transforms; Hydraulic equipment; Wavelet analysis; Wavelet decomposition; Wavelet transforms; Discrete wavelet analysis; Ensemble empirical mode decomposition; Ensemble empirical mode decompositions (EEMD); Hydrologic frequency analysis; Non-parameter approaches; Non-stationarities; Return periods; Weighted least squares; Risk perception; comparative study; decomposition; discrete element method; ensemble forecasting; least squares method; parameterization; precipitation (climatology); probability; probability density function; return period; trend analysis; uncertainty analysis; wavelet analysis; Taiwan
[SDGs]SDG13
Appears in Collections:土木工程學系

Show full item record

SCOPUSTM   
Citations

42
checked on Sep 11, 2023

WEB OF SCIENCETM
Citations

37
checked on Sep 23, 2023

Page view(s)

44
checked on Sep 25, 2023

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback