Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agronomy / 農藝學系
  4. Training set determination for genomic selection
 
  • Details

Training set determination for genomic selection

Journal
Theoretical and Applied Genetics
Date Issued
2019
Author(s)
Ou, Jen-Hsiang
CHEN-TUO LIAO  
DOI
10.1007/s00122-019-03387-0
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/450935
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85068777451&doi=10.1007%2fs00122-019-03387-0&partnerID=40&md5=5989e7a9fd9925176dfdb2ec43c2fec0
Abstract
Key message: A new optimality criterion is proposed to determine a training set for genomic selection, which is derived from Pearson’s correlation between GEBVs and phenotypic values of a test set. R functions are provided to generate the optimal training set. Abstract: For a specified test set, we develop a highly efficient algorithm to determine an optimal subset from a large candidate set in which the individuals have been genotyped but not phenotyped yet. The chosen subset serves as a training set to be phenotyped, and then a genomic selection (GS) model is built based on its phenotype and genotype data. In this study, we consider the additive effects whole-genome regression model and adopt ridge regression estimation for marker effects in the GS model. The resulting GS model is then employed to predict genomic estimated breeding values (GEBVs) for the individuals of the test set, which have been genotyped only. We propose a new optimality criterion to determine the required training set, which is derived directly from Pearson’s correlation between GEBVs and phenotypic values of the test set. Pearson’s correlation is the standard measure for prediction accuracy of a GS model. Our proposed methods can be applied to data with the varying degree of population structure. All the R functions for implementing our training set determination algorithms are available from the R package TSDFGS. The algorithms are illustrated with two datasets which have strong (rice genome dataset) and mild (wheat genome dataset) population structures. Our methods are shown to be advantageous over existing ones, mainly because they fully use the genomic relationship between the test set and the training set by taking into account both the variance and bias for predicting GEBVs.
Other Subjects
Forecasting; Population statistics; Regression analysis; Testing
Additive effects; Determination algorithm; Optimal training; Optimality criteria; Population structures; Prediction accuracy; Regression model; Ridge regression
algorithm; biological model; genetic selection; genetics; genomics; genotype; Oryza; phenotype; plant breeding; procedures; quantitative trait locus; wheat
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science