https://scholars.lib.ntu.edu.tw/handle/123456789/477725
Title: | Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI | Authors: | RUEY-FENG CHANG Chen H.-H. YEUN-CHUNG CHANG CHIUN-SHENG HUANG Chen J.-H. Lo C.-M. |
Keywords: | Breast Cancer; Computer-aided diagnosis; DCE-MRI; Molecular marker | Issue Date: | 2016 | Publisher: | Elsevier Inc. | Journal Volume: | 34 | Journal Issue: | 6 | Start page/Pages: | 809-819 | Source: | Magnetic Resonance Imaging | Abstract: | Purpose: Recognizing molecular markers is helpful for guiding treatment plans for breast cancer. This study correlated estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and triple-negative breast cancer (TNBC) statuses to the degree of heterogeneity on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Materials and methods: A total of 102 biopsy-proven cancers from 102 patients between October 2010 and December 2012 were used in this study, including ER (59 positive, 43 negative), HER2 (47 positive, 55 negative), and TNBC (22 TNBC, 80 non-TNBC). At first, the tumor region was segmented by using a region growing method. Then, the region-based features were extracted by the proposed regionalization method to quantify intra-tumoral heterogeneity on breast DCE-MRI. The three-dimensional morphological features (texture features and shape feature) and the pharmacokinetic model were also extracted from the segmented tumor region. After feature extraction, a logistic regression was used to classify ER, HER2, and TNBC statuses respectively. The performances were evaluated by using receiver operating characteristic (ROC) curve analysis. Results: The proposed region-based features achieved the accuracy of 73.53%, 82.35%, and 77.45% for ER, HER2, and TNBC classifications. The corresponding area under the ROC curves (Az) achieves 0.7320, 0.8458, and 0.8328 that were better than those of texture features, shape features, and Tofts pharmacokinetic model. Conclusion: The intra-tumoral heterogeneity quantified by the region-based features can be used to reflect the vasculature complexity of different molecular markers and to provide prediction information of cell surface receptors on clinical examination. ? 2016 Elsevier Inc. |
URI: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962920201&doi=10.1016%2fj.mri.2016.03.001&partnerID=40&md5=d90857315d7609477ca14585ea0eb873 https://scholars.lib.ntu.edu.tw/handle/123456789/477725 |
ISSN: | 0730725X | DOI: | 10.1016/j.mri.2016.03.001 | SDG/Keyword: | adult; aged; area under the curve; Article; breast cancer; cancer classification; controlled study; correlation analysis; diagnostic accuracy; diagnostic test accuracy study; dynamic contrast enhanced magnetic resonance imaging; estrogen receptor breast cancer; female; human; human epidermal growth factor receptor 2 breast cancer; major clinical study; nuclear magnetic resonance imaging; priority journal; receiver operating characteristic; sensitivity and specificity; triple negative breast cancer; breast; breast tumor; diagnostic imaging; image enhancement; metabolism; middle aged; nuclear magnetic resonance imaging; pathology; procedures; triple negative breast cancer; young adult; contrast medium; epidermal growth factor receptor 2; ERBB2 protein, human; estrogen receptor; tumor marker; Adult; Aged; Biomarkers, Tumor; Breast; Breast Neoplasms; Contrast Media; Female; Humans; Image Enhancement; Magnetic Resonance Imaging; Middle Aged; Receptor, ErbB-2; Receptors, Estrogen; ROC Curve; Triple Negative Breast Neoplasms; Young Adult [SDGs]SDG3 |
Appears in Collections: | 醫學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.