Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. Design and synthesis of new gold nanoparticles for enhanced photoacoustic response
 
  • Details

Design and synthesis of new gold nanoparticles for enhanced photoacoustic response

Journal
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
Journal Volume
7564
Date Issued
2010
Author(s)
Wei, C.-W.
Poe, C.
Chen, C.-M.
Lee, Y.-H.
Wang, C.-R.C.
PAI-CHI LI  
DOI
10.1117/12.842796
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/484573
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77951610973&doi=10.1117%2f12.842796&partnerID=40&md5=0ecbbd9d98a2e7810fb94213494b87a3
Abstract
Gold nanoparticles have been used as contrast agent in photoacoustic imaging to increase the detection sensitivity. For example, gold nanorods (AuNRs) have been used in time-intensity based flow estimation and used as nanoprobes to target cancer cells for early diagnosis and effective treatment. In this study, we aimed at the design and synthesis of a new type of gold nanoparticles with enhanced photoacoustic response. The key hypothesis is to create a nanostructure that allows anisotropic heat release. Specifically, such a structure results in higher heat flux transmitting outwards from the ends of the particle and therefore a greater temperature gradient can be created. To achieve this, a layer of SiO2 was coated along the longer axis of the gold nanorods, leaving both ends uncovered. These new particles are labeled as AuNR@nu-SiO2 with non-uniform ("nu") coating of silica. Experiments were performed to demonstrate the enhanced photoacoustic response from AuNR@nu-SiO2. The optical illumination was delivered by a Ti: Sapphire laser pumped by an Nd:YAG laser. A home-made photoacoustic transducer with a center frequency of 20 MHz detected the resulted acoustic signal. First, new types of particles coated with and without SiO2 were compared to bare AuNR in order to show the ability of the new nanostructure to enhance photoacoustic response. Second, the shape stability of the new particles was evaluated by measuring the photoacoustic responses versus time after high power laser irradiation. Third, the effect of thickness of SiO2 of AuNR@nu-SiO2 ranges from 1 nm to 15 nm was also evaluated. Results show that the mean intensity in photoacoustic image increase about 5 dB for AuNR@nu-SiO2 compared to bare AuNR. Also, it reveals that the normalized intensity for AuNR drops to below 0.6 while it is mostly larger than 0.7 in the case of AuNR@nu-SiO2 under pulse laser irradiation. In other words, the new type of nanoparticles is less susceptible to shape transformation. Moreover, it is indicated that the photoaocustic response increases slightly with the thickness of SiO2 and approach to an maximum response at 9 nm thickness. In short, these new particles can be used to achieve the same level of photoacoustic response with a fewer amount of particles, which means that there is less toxicity. ? 2010 Copyright SPIE - The International Society for Optical Engineering.
Subjects
Gold nanorod; Molecular imaging; Photoacoustic enhancement
SDGs

[SDGs]SDG3

Other Subjects
A-center; Acoustic signals; Cancer cells; Contrast agent; Detection sensitivity; Early diagnosis; Flow estimation; Gold Nanoparticles; Gold nanorod; Heat release; High-power; Intensity-based; Mean intensity; Molecular imaging; ND : YAG lasers; Nonuniform; Optical illumination; Photo-acoustic imaging; Photoacoustic image; Pulse laser; Shape stability; Shape transformation; Temperature gradient; Ti: Sapphire laser; Gold; High power lasers; Irradiation; Lasers; Nanoparticles; Nanorods; Neodymium lasers; Photons; Plasmons; Pulsed laser applications; Pumping (laser); Silica; Ultrasonic applications; Ultrasonics; Gold coatings
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science