Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Low Precision Deep Learning Training on Mobile Heterogeneous Platform
 
  • Details

Low Precision Deep Learning Training on Mobile Heterogeneous Platform

Journal
Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018
Pages
109-117
Date Issued
2018
Author(s)
Valery, O.
Liu, P.
PANGFENG LIU  
DOI
10.1109/PDP2018.2018.00023
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/489214
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048761947&doi=10.1109%2fPDP2018.2018.00023&partnerID=40&md5=9e2ab15d9ead2bc58cefb49b865610a4
Abstract
Recent advances in System-on-Chip architectures have made the use of deep learning suitable for a number of applications on mobile devices. Unfortunately, due to the computational cost of neural network training, it is often limited to inference task, e.g., prediction, on mobile devices. In this paper, we propose a deep learning framework that enables both deep learning training and inference tasks on mobile devices. While being able to accommodate with the heterogeneity of computing devices technology on mobile devices, it also uses OpenCL to efficiently leverage modern SoC capabilities, e.g., multi-core CPU, integrated GPU and shared memory architecture, and accelerate deep learning computation. In addition, our system encodes the arithmetic operations of deep networks down to 8-bit fixed-point on mobile devices. As a proof of concept, we trained three well-known neural networks on mobile devices and exhibited a significant performance gain, energy consumption reduction, and memory saving. © 2018 IEEE.
SDGs

[SDGs]SDG7

Other Subjects
Energy utilization; Fixed point arithmetic; Memory architecture; Mobile computing; Network architecture; Neural networks; Program processors; Programmable logic controllers; System-on-chip; GPGPU; Heterogeneous platforms; Heterogeneous systems; Neural network training; Opencl; Shared memory architecture; System-on-chip architecture; Transfer learning; Deep learning
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science