Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. Physiology / 生理學科所
  4. Refinement of breast cancer risk prediction with concordant leading edge subsets from prognostic gene signatures
 
  • Details

Refinement of breast cancer risk prediction with concordant leading edge subsets from prognostic gene signatures

Journal
Breast Cancer Research and Treatment
Journal Volume
147
Journal Issue
2
Pages
353-370
Date Issued
2014
Author(s)
Huang, C.-C.
Tu, S.-H.
Lien, H.-H.
Huang, C.-S.
Huang, C.-J.
LIANG-CHUAN LAI  
Tsai, M.-H.
MONG-HSUN TSAI  
ERIC YAO-YU CHUANG  
DOI
10.1007/s10549-014-3104-6
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027957781&doi=10.1007%2fs10549-014-3104-6&partnerID=40&md5=6291ba03dcfa3022da05d0ab3e3ae397
https://scholars.lib.ntu.edu.tw/handle/123456789/507741
Abstract
Several prognostic signatures have been identified for breast cancer. However, these signatures vary extensively in their gene compositions, and the poor concordance of the risk groups defined by the prognostic signatures hinders their clinical applicability. Breast cancer risk prediction was refined with a novel approach to finding concordant genes from leading edge analysis of prognostic signatures. Each signature was split into two gene sets, which contained either up-regulated or down-regulated genes, and leading edge analysis was performed within each array study for all up-/down-regulated gene sets of the same signature from all training datasets. Consensus of leading edge subsets among all training microarrays was used to synthesize a predictive model, which was then tested in independent studies by partial least squares regression. Only a small portion of six prognostic signatures (Amsterdam, Rotterdam, Genomic Grade Index, Recurrence Score, and Hu306 and PAM50 of intrinsic subtypes) was significantly enriched in the leading edge analysis in five training datasets (n?=?2,380), and that the concordant leading edge subsets (43 genes) could identify the core signature genes that account for the enrichment signals providing prognostic power across all assayed samples. The proposed concordant leading edge algorithm was able to discriminate high-risk from low-risk patients in terms of relapse-free or distant metastasis-free survival in all training samples (hazard ratios: 1.84–2.20) and in three out of four independent studies (hazard ratios: 3.91–8.31). In some studies, the concordant leading edge subset remained a significant prognostic factor independent of clinical ER, HER2, and lymph node status. The present study provides a statistical framework for identifying core consensus across microarray studies with leading edge analysis, and a breast cancer risk predictive model was established. ? 2014, Springer Science+Business Media New York.
SDGs

[SDGs]SDG3

Other Subjects
Article; breast cancer; cancer prognosis; cancer risk; down regulation; gene expression; gene sequence; gene signature; genetic analysis; human; leading edge analysis; microarray analysis; priority journal; risk assessment; upregulation
Publisher
Springer New York LLC
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science