Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Public Health / 公共衛生學院
  3. Food Safety and Health / 食品安全與健康研究所
  4. Synthesis and characterization of stabilized oxygen-releasing CaO2 nanoparticles for bioremediation
 
  • Details

Synthesis and characterization of stabilized oxygen-releasing CaO2 nanoparticles for bioremediation

Journal
Journal of Environmental Management
Journal Volume
212
Journal Volume
212
Pages
17-22
Start Page
17
End Page
22
ISSN
03014797
Date Issued
2018-04-15
Author(s)
Yeh, Chia-Shen
REUBEN WANG  
Chang, Wen-Chi
YANG-HSIN SHIH  
DOI
10.1016/j.jenvman.2018.01.068
URI
https://www.scopus.com/pages/publications/85041425063?inward
https://scholars.lib.ntu.edu.tw/handle/123456789/512175
Abstract
Bioremediation is one of the general methods to treat pollutants in soil, sediment, and groundwater. However, the low concentration and restricted dispersion of dissolved oxygen (DO) in these areas have limited the efficiency of remediation especially for microorganisms that require oxygen to grow. Calcium peroxide (CaO2) is one of the oxygen-releasing compounds and has been applied to magnify the remediation efficacy of polluting areas. In this study, CaO2 nanoparticles (NPs) were synthesized and evaluated by wet chemistry methods as well as dry and wet grinding processes. The characteristics of CaO2 particles and NPs were analyzed and compared by dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and X-ray powder diffraction. Our results showed that wet-grinded CaO2 NPs had an average particle size of around 110 nm and were more stable compared to other particles from aggregation and sedimentation tests. In addition, we also observed that CaO2 NPs had better DO characteristics and patterns; these NPs generated higher DO levels than their non-grinded form. Accordingly, our results suggested that wet-grinding CaO2 particles to nanoscale could benefit their usage in bioremediation.
Subjects
Aggregation
Calcium peroxide
Diesel degradation
Nanoparticle
Sedimentation
SDGs

[SDGs]SDG6

[SDGs]SDG15

Publisher
Academic Press
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science