Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Oceanography / 海洋研究所
  4. Long-term warming destabilizes aquatic ecosystems through weakening biodiversity-mediated causal networks
 
  • Details

Long-term warming destabilizes aquatic ecosystems through weakening biodiversity-mediated causal networks

Journal
Global Change Biology
Journal Volume
26
Journal Issue
11
Pages
6413-6423
Date Issued
2020
Author(s)
Chang, C.-W.
Ye, H.
Miki, T.
Deyle, E.R.
Souissi, S.
Anneville, O.
Adrian, R.
Chiang, Y.-R.
Ichise, S.
Kumagai, M.
Matsuzaki, S.-I.S.
Shiah, F.-K.
Wu, J.-T.
Hsieh, C.-H.
CHIH-HAO HSIEH  
CHUN-WEI CHANG  
DOI
10.1111/gcb.15323
URI
https://www.scopus.com/inward/record.url?eid=2-s2.0-85091160227&partnerID=40&md5=ea2c4b8c31b6ed3abe709689f63a84e0
https://scholars.lib.ntu.edu.tw/handle/123456789/542380
Abstract
Understanding how ecosystems will respond to climate changes requires unravelling the network of functional responses and feedbacks among biodiversity, physicochemical environments, and productivity. These ecosystem components not only change over time but also interact with each other. Therefore, investigation of individual relationships may give limited insights into their interdependencies and limit ability to predict future ecosystem states. We address this problem by analyzing long-term (16–39 years) time series data from 10 aquatic ecosystems and using convergent cross mapping (CCM) to quantify the causal networks linking phytoplankton species richness, biomass, and physicochemical factors. We determined that individual quantities (e.g., total species richness or nutrients) were not significant predictors of ecosystem stability (quantified as long-term fluctuation of phytoplankton biomass); rather, the integrated causal pathway in the ecosystem network, composed of the interactions among species richness, nutrient cycling, and phytoplankton biomass, was the best predictor of stability. Furthermore, systems that experienced stronger warming over time had both weakened causal interactions and larger fluctuations. Thus, rather than thinking in terms of separate factors, a more holistic network view, that causally links species richness and the other ecosystem components, is required to understand and predict climate impacts on the temporal stability of aquatic ecosystems. © 2020 John Wiley & Sons Ltd
SDGs

[SDGs]SDG13

Other Subjects
aquatic ecosystem; biodiversity; climate change; climate effect; ecosystem function; holistic approach; phytoplankton; warming; biodiversity; biomass; climate change; ecosystem; phytoplankton; Biodiversity; Biomass; Climate Change; Ecosystem; Phytoplankton
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science