Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Chemistry / 化學系
  4. Control of Band Gap and Band Edge Positions in Gallium-Zinc Oxynitride Grown by Molecular Beam Epitaxy
 
  • Details

Control of Band Gap and Band Edge Positions in Gallium-Zinc Oxynitride Grown by Molecular Beam Epitaxy

Journal
Journal of Physical Chemistry C
Journal Volume
124
Journal Issue
14
Date Issued
2020-04-09
Author(s)
Kraut, Max
Sirotti, Elise
Pantle, Florian
Jiang, Chang-Ming
Grötzner, Gabriel
Koch, Marvin
Wagner, Laura I.
Sharp, Ian D.
CHANG-MING JIANG  
DOI
10.1021/acs.jpcc.0c00254
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/575448
URL
https://api.elsevier.com/content/abstract/scopus_id/85084083394
Abstract
Gallium-zinc oxynitride (GZNO) is a promising material system for solar-driven overall water splitting, as it exhibits a tunable band gap in the visible range, beneficial positions of valence and conduction band edges, and promising long-term stability. Fabrication of GZNO is traditionally accomplished via a solid state reaction pathway. This limits the growth of thin films or large single crystals and the precise control of the composition, which complicates investigations about fundamental properties of the material, including, for example, the influence of the single constituent ratios on the band gap. In this work, we present the growth of GZNO thin films on sapphire by plasma-assisted molecular beam epitaxy (MBE). The thin films exhibit a crystallite size of up to 50 nm and a wurtzite crystal structure with distinct short-range disorder. Variations of Ga/Zn and N/O flux ratios are found to influence the optical absorption edge of the alloy without major impact on the Urbach energy. Controlled change of the composition of the alloy reveals that the band gap reduction is caused by both an increased valence band energy, which is correlated with the N content, and a decrease of the conduction band energy which is induced by increasing Zn content. Based on these findings, GZNO thin films with band gaps of down to 2.0 eV were fabricated and their photoelectrical properties assessed. Using MBE, we overcome compositional restrictions typically associated with stoichiometric GaN:ZnO solid solutions and provide unprecedented access to new compounds within this materials class. In doing so, we elucidate the specific role of individual elements on band edge energetics and demonstrate new routes to band gap engineering for future photocatalytic and photoelectrochemical applications.
SDGs

[SDGs]SDG7

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science