Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Surface roughness variation effects on copper tubes in pool boiling of water
 
  • Details

Surface roughness variation effects on copper tubes in pool boiling of water

Journal
International Journal of Heat and Mass Transfer
Journal Volume
151
Date Issued
2020
Author(s)
Mata Arenales M.R
C.S. S.K
Kuo L.-S
Chen P.-H.
PING-HEI CHEN  
DOI
10.1016/j.ijheatmasstransfer.2020.119399
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078088046&doi=10.1016%2fj.ijheatmasstransfer.2020.119399&partnerID=40&md5=d2a00c6bffebcdd4b21105da49ee3b4e
https://scholars.lib.ntu.edu.tw/handle/123456789/576197
Abstract
Results showing the effects of varying the surface roughness on copper tubes in pool boiling of water are presented in this study. To obtain different surface roughness values of each sample, the copper tubes were rotated with an electric rotor and sanded using sandpaper of different grit sizes. The average surface roughness values of the plain copper tubes were in the range 0.032–0.544 ?m. All experimental samples were horizontally oriented, and experiments were carried out in ambient conditions up to a moderate heat flux regime (450 kW/m2). Moreover, for a comparative analysis, a sample with a rough surface and hydrophobic patterns was included in this study. Compared with the smoothest surface, the aforementioned rough sample exhibited a heat transfer coefficient that was up to a factor 1.5 higher for the highest evaluated heat flux. These findings show that even small increments in the surface roughness along with the addition of hydrophobic patterns can significantly lower the wall superheat temperature and increase the heat transfer coefficient of copper tubes. Furthermore, supported by high-speed imaging of the experiment, it was observed that increasing the surface roughness caused bubbles to depart when their diameter was larger, and the nucleation site density and bubble departure frequency increased. In contrast, the rough surface with hydrophobic patterns exhibited the best overall enhancement, including the characteristics mentioned above of the rough surfaces along with a uniform distribution of the bubbles around the surface. ? 2020
Subjects
Copper; Heat flux; Heat transfer coefficients; Hydrophobicity; Screen printing; Surface measurement; Tubes (components); Average surface roughness; Boiling heat-transfer coefficients; Bubble departure frequencies; Hydrophobic patterns; Nucleation site density; Pool boiling; Screen printing technique; Uniform distribution; Surface roughness
SDGs

[SDGs]SDG13

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science