Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Graph Saliency Network: Using Graph Convolution Network on Saliency Detection
 
  • Details

Graph Saliency Network: Using Graph Convolution Network on Saliency Detection

Journal
Proceedings of 2020 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2020
Pages
177-180
Date Issued
2020
Author(s)
Lin H.-S
Huang J.-Y.
JIAN-JIUN DING  
DOI
10.1109/APCCAS50809.2020.9301708
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099541677&doi=10.1109%2fAPCCAS50809.2020.9301708&partnerID=40&md5=03537a5c27fd50af86e7fa04ef1805f1
https://scholars.lib.ntu.edu.tw/handle/123456789/580970
Abstract
Saliency detection is to detect the unique region of an image that may attract human attention. It is widely used in image/video segmentation, image enhancement, and image compression. Conventionally, saliency detection problem was solved by graph-based method cooperate with low-level features and heuristic rules. Recently, the convolutional neural networks (CNNs) based methods have been thrived in computer vision area and graph convolutional networks (GCNs), which are extended from the CNN, have been used in many graph data representations and also shown promising result in node classification problem. We proposed a novel saliency detection neural network model called the Graph Saliency Network (GSN), which use the Graph Convolutional Network as main architecture and the Jumping Knowledge Network as our backbone. For the graph creation, the Region Adjacency Graph is adopted as the image-graph transformation in the proposed architecture to propagate information through edges from the spatial boundary. We also revisit several graph-based saliency detection methods for our node feature representation. The propagation model of the GSN maintain the spatial relation of the CNN with a more flexible way and has less parameters to be optimized than the CNN from the advantage of information compression in superpixel and graph. Simulations showed that, using the proposed GCN-based model together with low-level features and heuristic rules, a saliency detection result with very less mean absolute error (MAE) can be achieved. ? 2020 IEEE.
Subjects
Backpropagation; Convolution; Feature extraction; Graph theory; Graphic methods; Heuristic methods; Image compression; Image enhancement; Image segmentation; Network architecture; Convolutional networks; Feature representation; Image/video segmentations; Information compression; Neural network model; Propagation modeling; Proposed architectures; Region adjacency graphs; Convolutional neural networks
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science