Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. CrossFusion net: Deep 3D object detection based on RGB images and point clouds in autonomous driving
 
  • Details

CrossFusion net: Deep 3D object detection based on RGB images and point clouds in autonomous driving

Journal
Image and Vision Computing
Journal Volume
100
Date Issued
2020
Author(s)
Hong D.-S
Chen H.-H
Hsiao P.-Y
Fu L.-C
Siao S.-M.
LI-CHEN FU  
DOI
10.1016/j.imavis.2020.103955
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086826571&doi=10.1016%2fj.imavis.2020.103955&partnerID=40&md5=5ba5fe959ea787a1a52327cafda0741e
https://scholars.lib.ntu.edu.tw/handle/123456789/581400
Abstract
In recent years, accurate 3D detection plays an important role in a lot of applications. Autonomous driving, for instance, is one of typical representatives. This paper aims to design an accurate 3D detector that takes both Li-DAR point clouds and RGB images as inputs according to the fact that both LiDAR and camera have their own merits. A deep novel end-to-end two-stream learnable architecture, CrossFusion Net, is designed to exploit features from both LiDAR point clouds as well as RGB images through a hierarchical fusion structure. Specifically, CrossFusion Net utilizes bird's eye view (BEV) of point clouds through projection. Besides, these two feature maps of different streams are fused through the newly introduced CrossFusion(CF) layer. The proposed CF layer transforms feature maps of one stream to another based on the spatial relationship between the BEV and RGB images. Additionally, we apply attention mechanism on the transformed feature map and the original one to automatically decide the importance of the two feature maps from the two sensors. Experiments on the challenging KITTI car 3D detection benchmark and BEV detection benchmark show that the presented approach outperforms the other state-of-the-art methods in average precision(AP), specifically, as well as outperforms UberATG-ContFuse [3] of 8% AP in moderate 3D car detection. Furthermore, the proposed network learns an effective representation in perception of circumstances via RGB feature maps and BEV feature maps. ? 2020 Elsevier B.V.
Subjects
Autonomous vehicles; Optical radar; Attention mechanisms; Autonomous driving; Bird's eye view; Car detection; Hierarchical fusions; Lidar point clouds; Spatial relationships; State-of-the-art methods; Object detection
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science