Clinical mutational profiling of 1006 lung cancers by next generation sequencing
Journal
Oncotarget
Journal Volume
8
Journal Issue
57
Pages
96684-96696
Date Issued
2017
Author(s)
Illei P.B.
Belchis D.
Nguyen D.
De Marchi F.
Haley L.
Riel S.
Beierl K.
Zheng G.
Brahmer J.R.
Askin F.B.
Gocke C.D.
Eshleman J.R.
Forde P.M.
Lin M.-T.
Abstract
Analysis of lung adenocarcinomas for actionable mutations has become standard of care. Here, we report our experience using next generation sequencing (NGS) to examine AKT1, BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA genes in 1006 non-small cell lung cancers in a clinical diagnostic setting. NGS demonstrated high sensitivity. Among 760 mutations detected, the variant allele frequency (VAF) was 2-5% in 33 (4.3%) mutations and 2-10% in 101 (13%) mutations. A single bioinformatics pipeline using Torrent Variant Caller, however, missed a variety of EGFR mutations. Mutations were detected in KRAS (36% of tumors), EGFR (19%) including 8 (0.8%) within the extracellular domain (4 at codons 108 and 4 at codon 289), BRAF (6.3%), and PIK3CA (3.7%). With a broader reportable range, exon 19 deletion and p.L858R accounted for only 36% and 26% of EGFR mutations and p.V600E accounted for only 24% of BRAF mutations. NGS provided accurate sequencing of complex mutations seen in 19% of EGFR exon 19 deletion mutations. Doublet (compound) EGFR mutations were observed in 29 (16%) of 187 EGFR-mutated tumors, including 69% with two non-p. L858R missense mutations and 24% with p.L858 and non-p.L858R missense mutations. Concordant VAFs suggests doublet EGFR mutations were present in a dominant clone and cooperated in oncogenesis. Mutants with predicted impaired kinase, observed in 25% of BRAF-mutated tumors, were associated with a higher incidence of concomitant activating KRAS mutations. NGS demonstrates high analytic sensitivity, broad reportable range, quantitative VAF measurement, single molecule sequencing to resolve complex deletion mutations, and simultaneous detection of concomitant mutations. ? Illei et al.
Subjects
Cancer; Lung; Mutation; Profiling; Sequencing
SDGs
Other Subjects
B Raf kinase; epidermal growth factor receptor; epidermal growth factor receptor 2; K ras protein; mammalian target of rapamycin; mitogen activated protein kinase; AKT1 gene; Article; BRAF gene; controlled study; EGFR gene; ERBB2 gene; exon; gene; gene deletion; gene duplication; gene frequency; gene mutation; human; human tissue; lung cancer; major clinical study; missense mutation; mutational analysis; next generation sequencing; non small cell lung cancer; oncogene K ras; oncogene N ras; PIK3CA gene
Publisher
Impact Journals LLC
Type
journal article