Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. A novel energy-efficient process of converting CO2 to dimethyl ether with techno-economic and environmental evaluation
 
  • Details

A novel energy-efficient process of converting CO2 to dimethyl ether with techno-economic and environmental evaluation

Journal
Chemical Engineering Research and Design
Journal Volume
177
Pages
1-12
Date Issued
2022
Author(s)
Wu T.-W
Chien I.-L.
I-LUNG CHIEN  
DOI
10.1016/j.cherd.2021.10.013
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117750961&doi=10.1016%2fj.cherd.2021.10.013&partnerID=40&md5=89db438e5e36bfa40679aaa11ad7cb4d
https://scholars.lib.ntu.edu.tw/handle/123456789/598211
Abstract
This work aims at discovering the potential of CO2 reduction by implementing techniques of process intensification in the production processes of green alternative fuel, dimethyl ether (DME), from CO2 and renewable hydrogen (H2) with both one-step and two-step configurations. A novel intensified process using the two-step configuration (named as TSHI), which converts CO2 to methanol followed by the dehydration of methanol to DME, is proposed in this study. Developed based on the validated thermodynamic representation and the reaction kinetics expression, TSHI shows the greatest potential of CO2 reduction – 1.704 ton CO2/ton DME – among the five discussed process scenarios. TSHI's energy consumption per unit weight of DME is compared with reported case in the literature, which also uses CO2 and renewable H2 as feedstock in a two-step configuration, and the result has shown an energy saving amount of 23%. Though TSHI exhibits high capability of reducing CO2 amount in the atmosphere, the result of techno-economic analysis showed that there are still rooms for further improvements to produce green alternative fuel cost-effectively. ? 2021 Institution of Chemical Engineers
Subjects
Alternative fuel
CO2 utilization
Dimethyl ether
Process intensification
PTL
Alternative fuels
Carbon dioxide
Economic analysis
Energy efficiency
Energy utilization
Methanol
Reaction kinetics
CO 2 reduction
Dehydration of methanol
Energy-efficient process
Production process
Renewable hydrogens
Techno-economic and environmental evaluations
Ethers
SDGs

[SDGs]SDG7

[SDGs]SDG13

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science