Visualizing band alignment across 2D/3D perovskite heterointerfaces of solar cells with light-modulated scanning tunneling microscopy
Journal
Nano Energy
Journal Volume
89
Date Issued
2021
Author(s)
Abstract
Graded 2D perovskite capping shells with continuously upshifting valence bands, produced by tailored dimensional engineering, can effectively extract holes from 3D perovskite cores. Real-space observation of electronic structures will fully reveal the operating mechanisms of 2D/3D hybrid perovskite solar cells (PSCs). Here, for the first time, light-modulated scanning tunneling microscopy visualizes the cross-sectional band alignment across 2D (C4H9NH3)2(CH3NH3)n-1PbnI3n+1/3D CH3NH3PbI3 stacked perovskites. By systematically analyzing their electronic configuration, the mixed-dimensional perovskite band structure along the vertical 3D-to-2D direction can be spatially resolved. Remarkably, the electric field in the 2D perovskite is larger under light illumination than under dark conditions, resulting in an increase in the concentration of holes and electrons distributed in the 2D and 3D perovskites, respectively. Benefiting from this electronic reconstruction, charge recombination is suppressed, thereby significantly promoting the 2D/3D PSC performance. Moreover, our method opens an avenue for direct, local mapping of optoelectronic device energy levels. ? 2021 The Authors
Subjects
2D/3D perovskite
Band mapping
Interface
Perovskite solar cells
Scanning tunneling microscopy
Cell engineering
Electric fields
Electronic structure
Interfaces (materials)
Optoelectronic devices
Perovskite
2d/3d perovskite
Band alignments
Electronic configuration
Electronic.structure
Hetero-interfaces
NH$-3$
Operating mechanism
Real-space observations
Spatially resolved
Mapping
Type
journal article