Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Quasi-site-specific prediction for deformation modulus of rock mass
 
  • Details

Quasi-site-specific prediction for deformation modulus of rock mass

Journal
Canadian Geotechnical Journal
Journal Volume
58
Journal Issue
7
Pages
936-951
Date Issued
2021
Author(s)
Ching J
Phoon K.-K
Ho Y.-H
Weng M.-C.
JIAN-YE CHING  
DOI
10.1139/cgj-2020-0168
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098585898&doi=10.1139%2fcgj-2020-0168&partnerID=40&md5=def28b039b26433ae4e41866521c9593
https://scholars.lib.ntu.edu.tw/handle/123456789/598496
Abstract
A generic rock mass database consisting of nine parameters is compiled from 225 studies. The nine parameters are the deformation modulus, elastic modulus, dynamic modulus, rock quality designation, rock mass rating, Q-system, geological strength index of a rock mass, as well as intact-rock Young’s modulus and intact-rock uniaxial compressive strength. This generic database, labeled as ROCKMass/9/5876, consists of 5876 rock mass cases. The goal of this paper is to examine how an existing transformation model such as deformation modulus versus rock mass rating can be made more unbiased and more precise for a specific site by combining sparse site data with ROCKMass/9/5876 in a manner sensitive to site-specific differences. The outcome is a quasi-site-specific transformation model. Four methods are studied to construct a quasi-site-specific transformation model for the deformation modulus of a rock mass: probabilistic multiple regression (cur-rent state of practice), hybridization method, hierarchical Bayesian model, and similarity method. The results from two case studies in Turkey show that the hierarchical Bayesian model is the most effective. ? Canadian Science Publishing. All rights reserved.
Subjects
Deformation modulus
Hierarchical Bayesian model
Quasi-site-specific transformation model
Rock mass properties
ROCKMass/9/5876
Site recognition challenge
Bayesian networks
Compressive strength
Deformation
Metadata
Rock mechanics
Geological strength index
Hierarchical Bayesian modeling
Hybridization methods
Multiple regressions
Rock quality designation
Transformation model
Uniaxial compressive strength
Rocks
Bayesian analysis
compressive strength
database
deformation
elastic modulus
multiple regression
parameterization
probability
regression
rock mass response
Turkey
Meleagris gallopavo
SDGs

[SDGs]SDG11

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science