Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Enhanced flow rate by the concentration mechanism of Tetris particles when discharged from a hopper with an obstacle
 
  • Details

Enhanced flow rate by the concentration mechanism of Tetris particles when discharged from a hopper with an obstacle

Journal
Physical Review E
Journal Volume
103
Journal Issue
6
Date Issued
2021
Author(s)
Gao G.-J.J
FU-LING YANG  
Holcomb M.C
Blawzdziewicz J.
DOI
10.1103/PhysRevE.103.062904
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108543557&doi=10.1103%2fPhysRevE.103.062904&partnerID=40&md5=aa48e4622e349e2f7a96255761469403
https://scholars.lib.ntu.edu.tw/handle/123456789/598826
Abstract
We apply a holistic two-dimensional (2D) Tetris-like model, where particles move based on prescribed rules, to investigate the flow rate enhancement from a hopper. This phenomenon was originally reported in the literature as a feature of placing an obstacle at an optimal location near the exit of a hopper discharging athermal granular particles under gravity. We find that this phenomenon is limited to a system of sufficiently many particles. In addition to the waiting room effect, another mechanism able to explain and create the flow rate enhancement is the concentration mechanism of particles on their way to reaching the hopper exit after passing the obstacle. We elucidate the concentration mechanism by decomposing the flow rate into its constituent variables: the local area packing fraction φlE and the averaged particle velocity vyE at the hopper exit. In comparison to the case without an obstacle, our results show that an optimally placed obstacle can create a net flow rate enhancement of relatively weakly driven particles, caused by the exit-bottleneck coupling if φlE>φoc, where φoc is a characteristic area packing fraction marking a transition from fast to slow flow regimes of Tetris particles. Utilizing the concentration mechanism by artificially guiding particles into the central sparse space under the obstacle or narrowing the hopper exit angle under the obstacle, we can create a manmade flow rate peak of relatively strongly driven particles that initially exhibit no flow rate peak. Additionally, the enhanced flow rate can be maximized by an optimal obstacle shape, particle acceleration rate toward the hopper exit, or exit geometry of the hopper. ? 2021 American Physical Society.
Subjects
Hoppers
Velocity control
Area packings
Flow rate enhancements
Granular particles
Obstacle shapes
Optimal locations
Particle acceleration
Particle velocities
Two Dimensional (2 D)
Flow rate
acceleration
article
decomposition
flow rate
geometry
waiting room
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science