Repository logo
  • English
  • 中文
Log In
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Time-Optimal Self-Stabilizing Leader Election in Population Protocols
 
  • Details

Time-Optimal Self-Stabilizing Leader Election in Population Protocols

Journal
Proceedings of the Annual ACM Symposium on Principles of Distributed Computing
Pages
33-44
Date Issued
2021
Author(s)
Burman J
Chen H.-L
Chen H.-P
Doty D
Nowak T
Severson E
Xu C.
CHEN HO-LIN  
DOI
10.1145/3465084.3467898
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109485150&doi=10.1145%2f3465084.3467898&partnerID=40&md5=8bcc0f6a8bc0ad3b75f414762cb5ec43
https://scholars.lib.ntu.edu.tw/handle/123456789/606972
Abstract
We consider the standard population protocol model, where (a priori) indistinguishable and anonymous agents interact in pairs according to uniformly random scheduling. The self-stabilizing leader election problem requires the protocol to converge on a single leader agent from any possible initial configuration. We initiate the study of time complexity of population protocols solving this problem in its original setting: with probability 1, in a complete communication graph. The only previously known protocol by Cai, Izumi, and Wada [Theor. Comput. Syst. 50] runs in expected parallel time Θ(n2) and has the optimal number of n states in a population of n agents. The existing protocol has the additional property that it becomes silent, i.e., the agents' states eventually stop changing. Observing that any silent protocol solving self-stabilizing leader election requires ω(n) expected parallel time, we introduce a silent protocol that uses optimal O(n) parallel time and states. Without any silence constraints, we show that it is possible to solve self-stabilizing leader election in asymptotically optimal expected parallel time of O(log n), but using at least exponential states (a quasi-polynomial number of bits). All of our protocols (and also that of Cai et al.) work by solving the more difficult ranking problem: assigning agents the ranks 1,?,n. ? 2021 Owner/Author.
Subjects
leader election
population protocols
self-stabilization
Asymptotically optimal
Communication graphs
Initial configuration
Leader Election Problem
Quasi-poly-nomial
Random scheduling
Ranking problems
Standard population
Computation theory
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science